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Spin-orbit coupling in ferromagnets gives rise to the anomalous Hall effect and the anisotropic
magnetoresistance, both of which can be used to create spin-transfer torques in a similar manner as the spin
Hall effect. In this paper, we show how these effects can be used to reliably switch perpendicularly
magnetized layers and to move domain walls. A drift-diffusion treatment of the anomalous Hall effect and
the anisotropic magnetoresistance describes the spin currents that flow in directions perpendicular to the
electric field. In systems with two ferromagnetic layers separated by a spacer layer, an in-plane electric field
causes spin currents to be injected from one layer into the other, creating spin-transfer torques. Unlike the
related spin Hall effect in nonmagnetic materials, the anomalous Hall effect and the anisotropic
magnetoresistance allow control of the orientation of the injected spins, and hence torques, by changing
the direction of the magnetization in the injecting layer. The torques on one layer show a rich angular
dependence as a function of the orientation of the magnetization in the other layer. The control of the
torques afforded by changing the orientation of the magnetization in a fixed layer makes it possible to
reliably switch a perpendicularly magnetized free layer. Our calculated critical current densities for a
representative CoFe/Cu/FePt structure show that the switching can be efficient for appropriate material
choices. Similarly, control of the magnetization direction can drive domain-wall motion, as shown for
NiFe/Cu/NiFe structures.
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I. INTRODUCTION

The use of spin-orbit coupling to generate spin-transfer
torques [1–5] raises the possibility of new types of devices
and more efficient versions of existing devices. In general,
the spin-orbit coupling in these studies has been provided
by a nonmagnetic heavy-metal layer such as Pt. Here, we
show that replacing this nonmagnetic layer by a ferromag-
netic layer and a thin spacer layer offers potential advan-
tages in device design. In existing approaches, spin-orbit
torques [6,7] typically derive from the spin Hall effect
[8–10] in the bulk of nonmagnetic layers or from spin-orbit
torques localized at the interface between such a layer and a
ferromagnetic layer [11–19]. The resulting torques may lead
to more efficient switching of memory elements [20–24] or
domain-wall motion [25–31]. Considerable experimental
[32–37] and theoretical [38–42] work is devoted to charac-
terizing these torques so as to understand the details of

their origin. However, device-design possibilities based on
heavy-metal layers are somewhat limited by the fact that
the form of the torques is determined by the geometry of the
device, that is, the direction of the current flow and the
interface normal. We show that replacing the nonmagnetic
heavy metal by a ferromagnetic layer and a thin spacer layer
gives greater control over the form of the torque because it is
controlled by the direction of the magnetization, which can
be varied, rather than the geometry.
Historically, the earliest spintronic effects, discovered

before the electron was known to have a spin, were the
anisotropic magnetoresistance [43,44] and the anomalous
Hall effect [45–49]. Both of these effects are caused by
spin-orbit coupling, but because of the strong coupling
between spin currents and charge currents in ferromagnets,
they are typically discussed in terms of the resulting
charge currents and voltages. Very recently, several groups
[50–54] measured what they described as the inverse spin
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Hall effect in permalloy, a nickel-iron alloy. This result
raises the point that a spin current will always accompany
the charge current caused by the anomalous Hall effect [10]
and the spin current will vary with the angle between the
magnetization and the charge current as in the anisotropic
magnetoresistance. We show that both the anomalous Hall
effect and anisotropic magnetoresistance in ferromagnets
can be exploited to generate spin currents and spin-transfer
torques in much the same way as the spin Hall effect
in nonmagnets. In this paper, we use the expression “spin
Hall effect” exclusively for nonmagnetic metals and
describe the related spin currents that occur in ferromagnets
as related to the anomalous Hall effect or the anisotropic
magnetoresistance.
The spin Hall effect [8–10] occurs in nonmagnetic

metals, particularly heavy metals with strong spin-orbit
coupling. When an electric field is applied in a particular
direction, a spin current flows in all directions perpendicular
to the field with spins oriented perpendicularly to their
flow. That is, for an electric field in the Ê direction, there
is a spin current in every direction ê perpendicular to the
electric field ê · Ê ¼ 0 with spins pointing in the ê × Ê
direction. This spin current can be written in the form
Qij ¼ ð−ℏ=2eÞσSHϵijkEk, where the second index of the
tensor spin currentQ refers to the real space direction of flow
and the first index refers to the orientation of the spin that is
flowing. E is the electric field, σSH is the spin Hall
conductivity, and ϵijk is the Levi-Cività symbol. Repeated
indices (here, k) are summed over (here, summing over
k ¼ x; y; z). The spin current arises through either intrinsic
mechanisms [55,56], that is through the spin-orbit coupling
in the band structure, or extrinsic mechanisms [57,58]
through the spin-orbit coupling in the impurity scattering.
The same spin-orbit effects occur in ferromagnets but are

complicated by the exchange potential that gives rise to
spin-split band structures and spin-dependent conductiv-
ities. One complication is that in a ferromagnet any spin
that is transverse to the magnetization precesses rapidly, so
any transverse spin accumulation or spin current dephases
quickly due to this precession. Thus, it becomes a very
good approximation to treat the spins in a ferromagnet as
parallel or antiparallel to the magnetization. Then, the
tensor spin current in a ferromagnet has spins pointing in
the direction of the magnetization m flowing in the js
direction, or Q ∼m ⊗ js. This feature plays a crucial role
in the results below. It allows control of the direction of the
spins injected into other layers due to spin-orbit effects
simply by changingm. Such control does not exist with the
spin Hall effect in nonmagnetic metals, where the direction
the spins point when injected into another layer is n ×E,
where n is the interface normal direction.
A second complication is that majority and minority

electrons see very different potentials so the spin-orbit
scattering that gives rise to pure spin currents in non-
magnets gives rise to a charge current as well as a spin

current. This charge current is the current measured in the
anomalous Hall effect, whose direction is given by m ×E.
Therefore, the spin current excited by the anomalous Hall
effect has spins pointing the m direction flowing in the
m ×E direction, that is

Q ¼ −ℏ
2e

ζσAHm ⊗ m ×E;

Qij ¼
−ℏ
2e

ζσAHmiϵjklmkEl: ð1Þ

The anomalous Hall conductivity σAH describes the charge
current due to the anomalous Hall effect; the associated
polarization ζ expresses the fact that this charge current is
spin polarized.
The anisotropic magnetoresistance [43,44] is an addi-

tional consequence of spin-orbit coupling in ferromagnets.
In this case, the conductivity of a ferromagnet is different if
the magnetization is along the electric-field direction or
perpendicular to it. While not typically considered, the
polarization of the conductivity will change in these two
cases. Another consequence of the anisotropy in the
conductivity occurs when the magnetization is at any angle
other than collinear with or perpendicular to the electric
field. For these other orientations of the magnetization, the
charge current has an additional contribution, which flows
in the direction of the magnetization. This current is
frequently described as the planar Hall effect because,
for a thin-film ferromagnet, an electric field gives rise to a
Hall current (perpendicular to the electric field) when the
magnetization is rotated in the plane of the film. The
charge-current direction due to the planar Hall effect is
given by mðm ·EÞ and again the spins flowing with that
current point in the m direction. Then, the anisotropic
magnetoresistance gives rise to a spin current

Q ¼ −ℏ
2e

ησAMRm ⊗ mðm · EÞ;

Qij ¼
−ℏ
2e

ησAMRmimjmkEk: ð2Þ

The conductivity σAMR describes the difference in the
charge conductivity, comparing cases with the magnetic
field parallel and perpendicular to the electric field. The
associated polarization η expresses the fact that this change
in the charge current is spin polarized. The spins both flow
and point along the magnetization.
The spin currents associated with the anomalous Hall

effect and the anisotropic magnetoresistance can replace
those associated with the spin Hall effect as generators of
torques with the advantage of being able to control the
orientation of the spins. Applying an electric field in the
plane of a ferromagnetic layer generates charge and spin
currents flowing perpendicular to it and into adjacent
layers. Thus in a F/N/F film, where F and N refer to
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ferromagnetic and nonmagnetic layers, respectively, an in-
plane electric field generates spin currents flowing perpen-
dicularly to the layers. These spin currents exert torques on
the magnetizations in both layers. The advantage of this
approach is the orientation of the flowing spins can be
controlled by varying the directions of the magnetizations.
The goal of this paper is to evaluate these spin-transfer
torques and show how they may be advantageous for
some device applications. We develop the drift-diffusion
equations in Sec. II and apply them to the case in which an
electric current flows in the plane of a F/N/F film. Details of
the derivation are given in the appendixes. In Sec. III, we
illustrate the angular dependence of the torque as both
magnetizations are varied and then show how these torques
can lead to effective magnetization switching and domain-
wall motion. We summarize our results in Sec. IV.

II. DERIVATION

In this section, we present the drift-diffusion equations in
ferromagnets, accounting for the spin-orbit-derived contri-
butions to the transport. Since spin components transverse to
the magnetization rapidly precess and dephase, they can be
neglected. Then, the charge and spin currents are combi-
nations of the majority and minority currents carried by
spin-s (s ¼ ↑;↓) electrons. In the presence of the anoma-
lous Hall (AH) effect and the anisotropic magnetoresistance
(AMR) effect, the spin-current densities are given by

j↑ ¼ ð1þ βÞ
2

σ

e
∇μ↑ þ ð1þ ζÞ

2

σAH
e

m × ∇μ↑

þ ð1þ ηÞ
2

σAMR

e
mðm · ∇μ↑Þ; ð3Þ

j↓ ¼ ð1 − βÞ
2

σ

e
∇μ↓ þ ð1 − ζÞ

2

σAH
e

m × ∇μ↓

þ ð1 − ηÞ
2

σAMR

e
mðm · ∇μ↓Þ; ð4Þ

where the (total) electric current density is j ¼ j↑ þ j↓. The
longitudinal conductivity and conductivities due to the
anomalous Hall effect and the anisotropic magnetoresist-
ance effect are denoted as σ, σAH, and σAMR, respectively,
and their spin polarizations are denoted as β, ζ, and η,
respectively. The spin-dependent electrochemical potentials
are denoted as μs. We define electrochemical potential μ̄ and
spin accumulation δμ as

μ̄ ¼ μ↑ þ μ↓

2
; δμ ¼ μ↑ − μ↓

2
: ð5Þ

We emphasize that the (longitudinal) spin accumulation
used in Refs. [59–61], which will be used below, is defined
as μ↑ − μ↓, which is twice the magnitude of δμ. In terms of μ̄
and δμ, we find that

j↑ þ j↓ ¼ σ

e
∇μ̄þ β

σ

e
∇δμ

þ σAH
e

m × ∇μ̄þ ζ
σAH
e

m × ∇δμ

þ σAMR

e
mðm · ∇μ̄Þ þ η

σAMR

e
mðm · ∇δμÞ; ð6Þ

j↑ − j↓ ¼ σ

e
∇δμþ β

σ

e
∇μ̄

þ σAH
e

m × ∇δμþ ζ
σAH
e

m × ∇μ̄

þ σAMR

e
mðm · ∇δμÞ þ η

σAMR

e
mðm · ∇μ̄Þ: ð7Þ

In terms of these current densities, the tensor spin-current
density is Q ¼ − ℏ

2em ⊗ ðj↑ − j↓Þ.
It is tempting to imagine that all three polarizations, β, ζ,

and η, are the same, but there is no reason that they should
be. The polarization of the longitudinal conductivity β is
determined by the spin-dependent densities of states and
particularly the spin-dependent scattering rates. It is typ-
ically between −1 and 1, with negative values for the rare
cases in which the minority conductivity is higher than
the majority. Values approach �1 for half metals. Values
greater than 1 or less than −1 would imply that one spin
type moves backwards. We are not aware of any such case.
The polarizations ζ (that of polarization of the anoma-

lous Hall effect) and η (that of the anisotropic magneto-
resistance) are not simply related to β. For example, we can
construct several contradictory arguments for the value
of ζ. If we imagine that the anomalous Hall effect were
simply a deflection of all carriers in one direction and that
these carriers then underwent the same spin-dependent
scattering as the longitudinal current, we would guess that
ζ≈½ð1þβÞσAH−ð1−βÞσAH�=½ð1þβÞσAHþð1−βÞσAH�¼β.
If on the other hand, we imagine that the anomalous
Hall effect originated from the spin Hall effect in which
different spins were deflected in opposite directions and
then each spin were subject to the same spin-dependent
scattering, wewould imagine that the majority and minority
electrons flowed in opposite directions but were affected by
the same spin-dependent scattering as the conductivity. The
reversed flow for the minority electrons essentially inverts
the polarization ζ≈½ð1þβÞσAHþð1−βÞσAH�=½ð1þβÞσAH−
ð1−βÞσAH�¼1=β. In fact, first-principles calculations [62]
of the spin polarization of the anomalous Hall effect give
results that vary widely and do not seem to agree with any
simple model. Some of this variability can be understood
from first-principles calculations [56] of the spin Hall
effect, which show that the spin Hall conductivity depends
sensitively on the Fermi level. The spin-split band structure
of ferromagnets can be viewed in a simple approximation
as just a shift in energies of the bands for one spin relative to
the other, or equivalently the two spins see different Fermi
energies. In this case, the minority and majority spins
that are deflected in different directions are deflected by
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different potentials and will be deflected in different
amounts. Therefore, part of the polarization ζ of the
anomalous Hall current comes from the energy dependence
of the underlying spin Hall effect. Similarly, η, the spin
polarization of the anisotropic magnetoresistance, is deter-
mined by the change in the spin-dependent scattering and
as such gives no expectation to its value.
We are interested in the geometry, illustrated in Fig. 1(b),

in which two ferromagnetic films are separated from each
other by a thin nonmagnetic layer that allows the magne-
tizations of the two layers to be oriented independently of
each other. We assume that the interface normals lie in the z
direction and the electric field is applied in the x direction.
We ignore charge and spin currents that flow in the y
direction because they do not couple to anything. In
general, an electric field in the x direction would give rise
to charge-current flow in the z direction, but the thin-film
geometry treated here prevents that. Except for the applied
electric potential eExx, only the z components of ∇μ̄ and
∇δμ are nonzero, i.e., ∇ðμ̄=eÞ ¼ Exex þ ð∂zμ̄=eÞez and
∇ðδμ=eÞ ¼ ð∂zδμ=eÞez. The electric field adjusts itself so
that no electric current flows in the z direction.
In a particular ferromagnetic layer, we can solve Eqs. (6)

and (7) together with the diffusion equation [63],

∂2

∂z2 ðμ
↑ − μ↓Þ ¼ μ↑ − μ↓

l2
sf

; ð8Þ

where lsf is the spin-flip diffusion length. In Appendix A,
we give details of the derivation of these solutions. Here,
we highlight some of the key steps. Forcing the charge
current in the z direction to be zero dictates that the spin
current in the z direction has the form

j↑z − j↓z ¼ ~σEEx þ
~σδμ

2elsf
ðAez=lsf − Be−z=lsf Þ; ð9Þ

where the constants A and B are determined in Appendix A.
The spin current is given in terms of two effective
conductivities, ~σE and ~σδμ. The former essentially gives
the spin current that would result in a bulk material in
response to a field in the x direction in which the transverse
charge current were constrained to be zero. The latter gives
the spin current in response to a spin accumulation,
including the corrections due to the charge current itself
being zero. The effective conductivities are

~σE ¼ ðβσ þ ησAMRm2
zÞðσAHmy − σAMRmzmxÞ

σ þ σAMRm2
z

− ðζσAHmy − ησAMRmzmxÞ; ð10Þ

and

~σδμ ¼ σ þ σAMRm2
z

− ðβσ þ ησAMRm2
zÞ
�
βσ þ ησAMRm2

z

σ þ σAMRm2
z

�
: ð11Þ

While the effective conductivities appear complicated,
~σE simplifies considerably in certain limits and gives
simple illustrations of the main results of this paper. If
the anisotropic magnetoresistance can be neglected,
~σE → ðβ − ζÞmyσAH, i.e., there is a spin current whenever
the magnetization has a component along the y direction,
Qiz ∼mimy. Thus, by tilting the magnetization out of
plane, it is possible to get an out-of-plane component of
the spins flowing into the other layer, something not
achievable with the spin Hall effect in nonmagnetic
materials. This feature is illustrated in Fig. 1(b). The factor
of ðβ − ζÞ arises from two contributions; the term propor-
tional to ζ is directly from the polarized current accom-
panying the anomalous Hall current. The term proportional
to β comes from the polarization of the counterflow current
that cancels the anomalous Hall current.
When the anomalous Hall effect can be neglected,

~σE → ðη − βÞmxmzσAMR
σ

σþσAMRm2
z
. This expression is more

complicated than that for the anomalous Hall effect above
because the anisotropic magnetoresistance affects the
conductivity in the z direction, as captured by the last
factor in this expression. As with the previous case, an out-
of-plane component of the magnetization gives an out-of-
plane component to the spin current, Qiz ∼mimxmz. As
with the previous case, the factor of ðη − βÞ appears from

m

Ex

(a)

F

N

dN

dF

z

x y

m

Ex

(b)

F1

N

dN

d1

F2

d2

p

FIG. 1. (a) Schematic geometry for spin-Hall-effect-induced
spin-transfer torques. In this geometry, the dampinglike torque is
with respect to the y axis, i.e., m × ðŷ ×mÞ (with a smaller
fieldlike torque). (b) Schematic geometry for anomalous-Hall-
effect-induced spin-transfer torques. In this case, the dampinglike
torque is with respect to the fixed-layer magnetization direction
p, i.e., m × ðp ×mÞ (with a smaller fieldlike torque).
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the polarized current due to the planar Hall effect and the
counterflow current that cancels the charge current of the
planar Hall effect.
Computing the torques on both layers requires finding

the spin accumulation and spin current throughout the
structure. The spin current at the F1-N interface is given in
terms of the spin accumulation at the F1-N interface and
interface conductances [59–61]. The spin accumulation is
found by applying appropriate boundary conditions to μ̄
and δμ as described in Appendix A. For a magnetic layer
with interface (1) at z ¼ 0 and interface (2) at z ¼ d, we
have

~σδμðμ↑ − μ↓Þ ¼ −2elsf

sinhðd=lsfÞ

×

�
ðjð1Þsz − ~σEExÞ cosh

�
z − d
lsf

�

− ðjð2Þsz − ~σEExÞ cosh
�

z
lsf

��
; ð12Þ

where jðiÞs is j↑ − j↓ at the interface of the normal metal
with ferromagnet i. The spin current is then

QF1→N
s ¼ 1

4π

�ð1 − γ2Þg
2

m · ðμF1 − μNÞm

−grm × ðμN ×mÞ − giμN ×m

�
: ð13Þ

Here g and γ are the dimensionless interface conductance
and its spin polarization, respectively, which is related
to to the interface resistance r via r ¼ ðh=e2ÞS=g with
h=e2 ≈ 25.9 kΩ. The cross-section area is denoted as S.
The real and imaginary parts of the mixing conductance are
denoted as gr and gi, respectively. Note that the charge
chemical potential does not appear because the charge
current across the interface is zero and this fact allows us to
relate the chemical-potential difference to the longitudinal-
spin chemical-potential difference and eliminate the former
from the equation for the spin current.
The solutions of the spin accumulations in each ferro-

magnetic layer and the boundary conditions allow us to
write the spin current in each ferromagnetic layer in terms
of just the spin accumulation in the nonmagnetic layer,

QF1→N
s ¼ ℏg�

2eg0sd
tanh

�
d1
2lsf

�
~σEExSm

−
1

4π
½g�ðm · μNÞm

þ grm × ðμN ×mÞ þ giμN ×m�; ð14Þ

where g� is defined as

1

g�
¼ 2

ð1 − γ2Þgþ
1

g0sd tanhðd1=lsfÞ
; ð15Þ

and a dimensionless spin-diffusion conductance is defined
as

g0sd
S

¼ h ~σδμ
2e2lsf

: ð16Þ

Similarly, the spin current at the F2-N interface is
given by

QF2→N
s ¼ −

ℏg�

2eg0sd
tanh

�
d2
2lsf

�
~σEExSp

−
1

4π
½g�ðp · μNÞp

þ grp × ðμN × pÞ þ giμN × p�: ð17Þ
In the structure in Fig. 1, we separate the two ferromag-

netic layers by a thin nonmagnetic layer.We assume that this
layer effectively breaks the exchange coupling between the
two ferromagnetic layers. We also assume that it is still
thinner than its mean free path and spin diffusion length, so
that spin current injected at one interface transmits
unchanged to the other interface. These assumptions imply
that the spin current and spin accumulation in the spacer
layer can be treated as constant. This condition means that
QF1→N

s þQF2→N
s ¼ 0, from which μN can be determined.

Then, the spin torque acting on m is obtained from

T ¼
�
dm
dt

�
st
¼ γ0

μ0MsV
m × ðQF1→N

s ×mÞ; ð18Þ

where μ0 is the magnetic constant and γ0,Ms, and V are the
gyromagnetic ratio, saturationmagnetization, and volumeof
F1, respectively.
Further progress requires taking these solutions for both

ferromagnetic layers and solving for the spin accumulation
in the nonmagnetic layer. In general, the resulting torque
can be written in the form

T ¼ γ0ℏEx

2eμ0Msd1

× ½σdeffðm;pÞm × ðp ×mÞ þ σfeffðm;pÞp ×m�: ð19Þ

The superscripts on the effective conductivities refer to the
dampinglike d and fieldlike f components of the torque.
However, a key point of this paper is that these dampinglike
and fieldlike torques are defined with respect to the ori-
entation of the magnetization in the other layer, here p, and
not, as for the spinHall effect, the direction Ê × n̂, where n̂ is
the interface normal. See Fig. 1 for the comparison. The
effective conductivities depend strongly on the directions of
the magnetizations m and p. In particular, they inherit the
strong orientational dependence from ~σE. When the imagi-
nary part of the mixing conductance can be neglected, the
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fieldlike torque vanishes. The spin torque acting on p is
obtained in a similar way. In Appendix B, we show how to
compute the torques numerically for the general case and
show some analytic forms for some special cases. In Sec. III,
we present numerical results and investigate the conse-
quences of these torques on switching and domain-wall
motion.
The derivation in this section is done using the drift-

diffusion approach, as is typically used in the analysis of
experiments using the spin Hall effect to generate spin-
transfer torques. This approximation does not capture the
in-plane giant magnetoresistance effect because, in the
absence of spin-orbit effects, the drift-diffusion approxi-
mation is not able to describe a spin current flowing from
layer to layer when the applied electric field is in the plane.
The simplest calculation to capture the current-in-plane
giant magnetoresistance is based on the Boltzmann equa-
tion [64]. When applied to the spin Hall effect and resulting
torques [38], calculations based on the Boltzmann equation
qualitatively but not quantitatively agree with those
based on the drift-diffusion approach. The drift-diffusion
approach does not even qualitatively capture the conse-
quences of interfacial spin-orbit coupling. For the present
calculations, we also expect that the present approximation
would qualitatively but not quantitatively agree with
calculations based on the Boltzmann equation.
For the case of in-plane giant magnetoresistance without

spin-orbit coupling, the Boltzmann equation does describe
spins flowing from each layer to the other. However,
there is no net spin flow perpendicular to the layers. The
perpendicular spin current due to electrons moving with the
electric field cancels the spin current due to electrons
moving opposite to it. Thus, in both drift-diffusion calcu-
lations and Boltzmann equation calculations, there are no
spin-transfer torques in the absence of spin-orbit coupling.
The drift-diffusion approach has not yet been formulated

in a way that can treat interfacial spin-orbit coupling and so
we neglect such contributions here. Inclusion of interfacial
spin-orbit coupling in the Boltzmann equation [38] can
lead to large fieldlike torques, which can have significant
effects on the magnetization dynamics. In the present
approach, all fieldlike torques arise from the imaginary
part of the mixing conductance, which is expected to be
small for interfaces between Cu and 3d transition-metal
ferromagnets. We find that these contributions do not play
an important role in the calculations presented below.

III. RESULTS

A. Angular dependence of torques

While the full solution of the torque for a general model is
quite complicated, it can be qualitatively understood much
more simply.Using theparameters inTable I,we compute the
torque for a variety ofmagnetization directions for two 5-nm-
thick NiFe layers and plot them in Fig. 2. For simplicity, we

consider two cases, σAMR ¼ 0 and σAH ¼ 0, sowe can show
the effect of each separately. In the limit that both are much
less than σ, the two contributions should add. Very little
information is available about the parameters ζ and η
describing the polarization of the anomalous Hall effect
and the anisotropicmagnetoresistance. Calculated values for
impurities in Fe have an approximate range of −0.5 to 2.0
[62]. For NiFe, Miao et al. [50] report a spin Hall angle of
0.005. Combined with the reported anomalous Hall angle of
0.001, Ref. [71] gives a value of ζ ¼ 5. The rest of the values
for ζ and η in Table I are taken from the range found by
Zimmermann et al. [62]. These values are plausible and
illustrate the important physics of such effects, but further
measurements are needed to determine actual values.
Consider first the case in which there is only the

anomalous Hall effect. We assume that the imaginary part
of the mixing conductance is much less than the real part,
so any fieldlike torque that is present is also much smaller
than the dampinglike contribution. Guidance for the
approximate angular dependence of the torque is given
in Sec. I, which gives ~σEðβ − ζÞpyσAH for the spin current
due to the fixed layer with its magnetization in the p
direction. Since the spins in the spin current point
in the p direction, the dampinglike torque varies as
pym × ðp ×mÞ. When the magnetization is along the y
axis, the torque has the same angular dependence as the
spin Hall effect, as shown in the heavy red curves of
Figs. 2(e)–2(j), a dampinglike torque with respect to the y

TABLE I. Default material parameters. Parameters are chosen
to approximate Ni80Fe20 (permalloy), CoFeB, and FePt, but some
values are not well known. In particular, η and ζ are unknown to
our knowledge and so we choose representative values. Values for
some parameters are taken from sources indicated in the table
footnotes; the remaining values are estimated.

NiFe CoFeB FePt Units

ρ 122a 300b 390c Ω N
β 0.7a 0.56b 0.40d

r 0.5a 0.5b 0.5 kΩ N2

γ 0.7a 0.83b 0.83
gr=S 10.0e 10.0 10.0 N−2
gi=S 1.0 0.0 0.0 N−2
lsf 5.5a 4.5f 5.0d nm
σAH=σ 0.001g 0.0 0.015c

σAMR=σ 0.06h 0.0 0.0147i

ζ 5 0 1.5
η 0.9 0 −0.1
Ms 0.86j 0.456k MA=m
HK 0.0 0.569k MA=m
γ0 0.23 206 0.23 206 Mm=ðA sÞ
α 0.01j 0.01
aReference [65]. bReference [66]. cReference [67].
dReference [68]. eReference [69]. fReference [70].
gReference [71]. hReference [72]. iReference [73].
jReference [74]. kReference [75].
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axis. In this case, the out-of-plane torque Tz [heavy red
curve in Fig. 2(g)] is essentially zero when the magneti-
zation is rotated in plane.
As the fixed-layer magnetization is rotated out of plane

[light (green) and dashed (blue) curves in Figs. 2(e)–2(j)],
the torque remains dampinglike, pym × ðp ×mÞ, but it
develops an out-of-plane component Tz, even when the
magnetization is rotated in plane [light (green) and dashed
(blue) curves in Fig. 2(g)]. The out-of-plane component
breaks the symmetry between m ¼ �ẑ, making it possible
to reliably switch the magnetization, as discussed in
Sec. III B. However, as the polarizer magnetization is
rotated toward the pole, the total size of the torque goes
to zero because py goes to zero when pz → �1.
When the anomalous Hall effect is absent and the

anisotropic magnetoresistance is present [Figs. 2(k)–2(p)],
the angular dependence is slightly more complicated. Recall
from Sec. I that ~σE → ðη − βÞpxpzσAMR½σ=ðσ þ σAMRp2

zÞ�

when the anomalous Hall effect is absent. If σAMR=σ ≪ 1,
the last factor can be neglected. In that case, the dampinglike
torque varies as pxpzm × ðp ×mÞ. The spin current flows
along the magnetization direction so, unless pz ≠ 0, there is
no spin-current flow into the free layer. Thus, the torque is
zero when the fixed-layer magnetization is in plane [heavy
(red) curves in Figs. 2(k)–2(p)]. Otherwise, it has roughly a
dampinglike form with respect to the fixed-layer magneti-
zation. For the values of parameters we assume, there are
deviations from the simplem × ðp ×mÞ behavior expected
when the spin-orbit effects are weak.

B. Magnetic switching

One advantage of spin-orbit effects in ferromagnets, as
compared to the spin Hall effect, is that the control over the
direction of the incident spin current allows for the
excitation of magnetization dynamics that cannot be
excited by the spin Hall effect. An example of such
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dynamics is a switching of a perpendicularly magnetized
free layer in the absence of an external field. In this section,
we analytically compute the critical current for switching a
perpendicular magnetization in F1 due to the anomalous
Hall effect and anisotropic magnetoresistance effect in F2.
We verify the behavior by direct numerical simulation of
the Landau-Lifshitz-Gilbert (LLG) equation.
For illustrative purposes, we simplify the generally

complex dependence on relative angle of themagnetizations
seen in Eq. (B18) by treating a special case. We assume that
F1 has neither the anomalous Hall effect nor the anisotropic
magnetoresistance, i.e., σAHðF1Þ ¼ σAMRðF1Þ ¼ 0, whereas
F2 has both. The magnetization of F1, m, can move freely,
whereas that of F2, p, points to an arbitrary fixed direction.
The values of the parameters are chosen for a CoFeB free
(F1) layer and a FePt pinned (F2) layer, and summarized in
Table I.
The LLG equation for the magnetization in F1, with the

spin torque, Eq. (19), is

dm
dt

¼ − γ0m ×Hþ αm ×
dm
dt

þ γ0ℏ
2eμ0Msd1

Exσ
d
effm × ðp ×mÞ; ð20Þ

where α is the Gilbert damping constant, and σdeff is given
by (see also Appendix B)

σdeff ¼
tanh½d2=ð2lF2

sf Þ�grðF1Þg�F2ðpÞ ~σEðF2ÞðpÞ
g0sdðF2ÞðpÞ½grðF1Þ þ g�F2ðpÞ�½1 − λ1λ2ðpÞðm · pÞ2� :

ð21Þ

We introduce the parameter λk (k ¼ 1, 2), which character-
izes the dependence of the spin-transfer-torque strength on
the relative angle of the magnetizations,

λk ¼
grðFkÞ − g�Fk
grðFk0 Þ þ g�Fk

; ð22Þ

where ðk; k0Þ ¼ ð1; 2Þ or (2, 1). We emphasize that
g0sdðF2ÞðpÞ, g�F2ðpÞ, λ2ðpÞ, and ~σEðF2ÞðpÞ depend
on the direction of p, according to their definition,
Eqs. (10), (11), (15), (16), and (22). On the other hand,
λ1 is independent of m because the F1 layer does not show
the anomalous Hall effect nor the anisotropic magneto-
resistance effect.
We assume that F1 is a perpendicular magnet with an

anisotropy field given byH ¼ (0; 0; ðHK −MsÞmz), where
HK is the perpendicular anisotropy field. In the absence of
an electric field Ex, the free-layer magnetization is stable
along the perpendicular axis. We assume that it starts
along the z axis, i.e., m ¼ ẑ. In the presence of the spin
torque, the magnetization is destabilized, and starts to
precess around the z axis. Assuming that mz ≃ 1 and

jmxj; jmyj ≪ 1, we can linearize the LLG equation (see
Appendix C) and determine the critical current,

jcrit ¼ −
2αeμ0Msd1ðHK −MsÞ

ℏ tanh½d2=ð2lF2
sf Þ�

×
ð1 − λ1λ2p2

zÞ2g0sdðF2ÞðgrðF1Þ þ g�F2ÞσF2
ð1 − λ1λ2Þpzg�F2grðF1Þ ~σEðF2Þ

: ð23Þ

Using Eq. (23), we can estimate the critical current for
field-free switching of perpendicular layers. As an exam-
ple, let us assume that F2 has the anomalous Hall effect
only, i.e., σAHðF2Þ ≠ 0 and σAMRðF2Þ ¼ 0. In this case, ~σEðF2Þ
is ðβF2 − ζF2ÞpyσAHðF2Þ and Eq. (23) can be simplified to
Eq. (C3). We choose the pinned-layer magnetization to be
p ¼ ð0; 1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p Þ and take the parameter values given
in Table I. For 10 nm of FePt, which can be fixed in a
partially out-of-plane configuration [76], as a polarizer and
1 nm of CoFeB, with perpendicular anisotropy, as a free
layer, we find a critical current of 0.76 × 1012 A=m2 from
Eq. (23). In Fig. 3, we show the magnetization dynamics
obtained by numerically solving the LLG equation (20) for
the electric current densities of j ¼ 0.9jc [Fig. 3(a)] and
j ¼ 1.5jc [Fig. 3(b)]. The magnetization stays near the
initial direction in Fig. 3(a), whereas in Fig. 3(b), it
switches direction to m ¼ −ẑ, showing the validity
of Eq. (23).
Figure 4 shows the switching current as a function

of the orientation of the fixed-layer magnetization
p¼(sinðθfixedÞcosðϕfixedÞ;sinðθfixedÞsinðϕfixedÞ;cosðθfixedÞ)
from Eq. (23), and verified by numerical simulation of the
LLG equation. The three panels in Fig. 4 show switching
due to the anomalous Hall effect and anisotropic magneto-
resistance separately and combined. For the parameters
chosen here, given in Table I, the anomalous Hall effect is
more efficient. Figure 4 shows that the most efficient
switching occurs when the polarizer magnetization is close
to perpendicular (θfixed ≈ 30°). The efficiency is determined
by a competition between two effects. One effect is the
efficiency of the spins at destabilizing the magnetization
toward reversal. Spins injected perpendicular to the stable
magnetization direction exert the greatest torque, but since
they enhance precession only over half a period and
suppress it over the other, they do not destabilize the
magnetization. Electrons with moments antiparallel to the
magnetization exert no torque, but when the magnetization
fluctuates, they exert a torque that destabilizes the mag-
netization over the whole precession period. When the
critical current is large enough, they overcome the damping
and any fluctuations get magnified, leading to reversal. The
counterbalancing effect is that when the pinned-layer
magnetization is collinear with the magnetization, it
is also collinear with the film normal and the injected spin
current goes to zero. So, the most efficient switching occurs
with the pinned-layer magnetization close to normal but
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not all the way there (θfixed ≈ 30°), maximizing the total
perpendicular component of the injected spins. Switching
due to the anomalous Hall effect and that due to anisotropic
magnetoresistance depend differently on the azimuthal
angle so, for some orientations of the fixed-layer magneti-
zation, they compete; for others, they cooperate to reduce
the critical current.
The critical current is minimized at an optimal direction

of p. Because of complex dependences of ~σE and ~σδμ on
the magnetization direction, as shown in Eqs. (10) and (11),
it is difficult to derive a formula of this optimal direction.
However, for F2 with the anomalous Hall effect only, we
can derive the analytical formula of the optimum direction
of p; see Appendix C1. The result for this set of parameters
is θfixed ¼ 31.6°, ϕfixed ¼ 90°.
We can compare these results with the magnetization

switching assisted by the spin Hall effect. In the spin Hall
effect, spin current polarized along the ŷ direction is
injected to the free layer. This situation is similar to a
special case of switching by spin-orbit effects in

ferromagnets in which the pinned-layer magnetization is
in the ŷ direction. It is useful to consider a generalized
situation with the fixed-layer magnetization in the y-z
plane, ϕfixed ¼ 90° with no anisotropic magnetoresistance.
Then, ~σE simplifies and Eq. (23) has the factor pypz in the
denominator, as seen in Eq. (C3). This factor implies that
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jAHc diverges when p points to the z direction (py ¼ 0 and
pz ¼ 1), because the anomalous Hall effect does not induce
spin current along the z direction when py ¼ 0. The critical
current also diverges when p points to the y direction
(py ¼ 1 and pz ¼ 0), because the spin-transfer torque
never overcomes the damping torque as needed to enhance
precession. This divergence is the equivalent of switching
by the spin Hall effect. While the spin-transfer torque can
excite magnetization dynamics, when the fixed-layer mag-
netization is along ŷ, it does not overcome the damping and
does not cause precession to become unstable.
It is possible to excite dynamics in perpendicularly

magnetized samples with the spin Hall effect (or the
anomalous Hall effect with p ¼ ŷ) as shown by Lee et al.
[23]. In fact, they demonstrate that it is possible to switch
the magnetization. However, the switching they observe is
not due to the spin-transfer torque overcoming the damp-
ing, but rather is due to a large-amplitude excitation due to
the rapid onset of the current and hence torque. However,
since nothing in the system breaks the symmetry between
up and down, such switching is extremely sensitive to pulse
duration and current amplitude. Lee et al. [23] demonstrate
such sensitivity in Fig. 1(b) of their paper. They derive an
analytic form, Eq. (5) in Ref. [23], for the critical current
that is independent of the damping parameter. This inde-
pendence indicates that the switching mechanism is preces-
sional, rather than due to overcoming damping. To switch
the magnetization direction without such sensitivity, an in-
plane magnetic field slightly tilted to the z direction has
been used experimentally [77]. The switching mechanism
due to the anomalous Hall effect with a fixed layer with an
out-of-plane component to the magnetization has the
advantage of being largely independent of the current
density or pulse duration for currents above the critical
current. Another advantage is that the external field is
unnecessary to switch the magnetization. The critical
current can also be significantly lower when the damping
parameter is small, as is desirable in many magnetic
devices.

C. Domain-wall motion

The spin-orbit torques generated by ferromagnets can
also be useful to displace in-plane magnetic domain walls,
which we illustrate through two simple examples. We first
consider the spin valve illustrated in Fig. 5(a), with an in-
plane domain wall in the free layer F1 and a uniform
polarizer p ¼ ð0; py; pzÞ in the fixed layer F2. Due to the
spin-orbit effects in F2, a torque is generated on F1 that has
the form T ¼ τsoðm;pÞm × ðm × pÞ. To study the effect of
this torque, we consider a 1D model [78] of a transverse-
wall profile with a domain-wall width Δ. The magnetiza-
tion in the free layer, with the domain wall, is subject to a
spin current from a fixed layer below. This spin current will
cause a small tilting of the magnetization away from the
long axis in all of the domains and will cause motion of the

domain wall. We neglect the small tilting of the domains to
get the following equations for the domain-wall dynamics:

_ϕþ α

Δ
_q ¼ τsopz cosϕ − τsopy sinϕ; ð24Þ

_q
Δ
− α _ϕ ¼ γ0HK sinϕ cosϕ: ð25Þ

Here q is the domain-wall position, ϕ the out-of-plane tilt
angle, and HK the shape anisotropy. At equilibrium in the
absence of spin torques, ϕ is equal to zero and the domain
wall lies in plane.
In the regime below Walker breakdown, the wall moves

with a constant tilt angle and a steady velocity. Assuming
the tilt is small, sinϕ ≪ 1,

ϕ ¼ τsopz

αγ0HK þ τsopy
;

_qAH ¼ Δ
α
τsopz

αγ0HK

αγ0HK þ τsopy
: ð26Þ

Since αγ0HK ≫ τso for typical values of the current density,
the out-of-plane tilt is indeed small. The domain wall
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moves steadily only if the generated spin torque has a
component along the z direction. The torque generated by a
pure spin Hall effect in a nonmagnetic heavy metal does not
have such a component so that the domain wall does not
move [79]. On the other hand, the spin-orbit torques
generated by a ferromagnet can have components along
both the z and y directions when the polarizer is tilted out of
plane. If, as we did in Sec. III A, we consider the case of the
torque generated by just the anomalous Hall effect in F2,
then

τAH ¼ γ0ℏ
2eμ0Ms

tanh½d2=ð2lsfÞ�
d1

g�gr
g0sdðgr þ g�Þ

×
1

1 − λ2ðm · pÞ2 ðβ − ζÞσAHExpy: ð27Þ

This behavior is shown in Fig. 5, in which we treat the
motion for the case with the anomalous Hall effect and
anisotropic magnetoresistance in both layers. However,
since we assume the magnetization lies in the y-z plane, the
anisotropic magnetoresistance plays a negligible role.
Figure 5 shows a relatively large domain-wall velocity
for a modest charge current density of 2 × 1011 A=m2 and a
very small out-of-plane tilt of less than a degree.
In the proposed spin-valve system, the current flowing in

the ferromagnet F1 through the domain wall will also give
rise to the more familiar (intralayer) adiabatic and non-
adiabatic spin-transfer torques on the domain wall, and
these torques can enhance or oppose the effect of the spin-
orbit torques. In comparison, the domain-wall velocity
induced by these intralayer torques is

_qna ¼
1

α

γ0ℏ
2eμ0Ms

PβnaσEx; ð28Þ

where P ≈ β is the current polarization and βna the
proportionality factor between the nonadiabatic and adia-
batic torques. The ratio of the velocities is

_qAH
_qna

≈
Δ
d1

pypzF
ðβ − ζÞσAH

Pβnaσ
; ð29Þ

where F is a series of factors of order 1 [see Eq. (27)]. The
ratio of material factors (last factor on the right-hand side)
is not well known. In NiFe, the ratio appears to be close to 1
[50]. If that ratio is 1 or more and a judicious choice is made
for the orientation of the fixed layer, we expect the domain
wall will be mainly driven by the anomalous Hall torque
because the wall width is typically much bigger than the
layer thickness Δ=d > 10 for most systems [80].
The other system we consider is the coupled domain-

wall system shown in Fig. 6(a). In the case of a fixed
polarizer F2 and a free layer F1, F2 can exert a torque on F1.
But if F2 is no longer fixed, F1 can also induce a torque on
F2. If the magnetic configuration is well chosen, these

reciprocal torques can add and enhance magnetization
dynamics of the coupled system. This enhancement occurs
for the double domain-wall system with antiparallel con-
figuration shown in Fig. 6.
If both magnetic layers are unpinned, the domain walls

in each layer are strongly coupled. Domain walls in wires
with opposite in-plane magnetizations tilt out of plane
significantly due to the dipolar interaction between them, as
shown in Fig. 6. In transverse domain walls in isolated
wires, the magnetization is largely in plane, but the
structure of the wall is very asymmetric from side to side.
This asymmetry leads to fringing fields that have strong
out-of-plane components, as shown in Fig. 6(c). When two
wires are stacked on top of one another, these fringing
fields cause the magnetization in the domain walls to tilt out
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of plane. Figure 6(b) shows that the in-plane components
of the magnetization in the two walls are opposite, so that
the out-of-plane components are in the same direction.
Thus, in equilibrium, one domain wall has the out-of-
plane tilt angle ϕ0, and the other π − ϕ0, so that the out-of-
plane component is in the same direction and the in-plane
directions are opposite. This configuration is illustrated in
the micromagnetic simulations in Fig. 6(b) where blue
shows the out-of-plane component of the magnetization
[81]. As the spacer thickness tN decreases, the dipolar fields
on each domain wall increase, and the maximum out-of-
plane tilt angle increases as shown in Fig. 6(d), reaching
values close to 15° for spacer thicknesses typical of
synthetic antiferromagnets.
In this configuration, the domain wall in F2 polarizes the

domain wall in F1 (and reciprocally), and we can replace py

and pz, respectively, by − cosϕ and sinϕ in Eq. (24). For
small-angle deviations from the equilibrium configuration,
this replacement immediately leads to

_qAH ¼ Δ
α
τso sinð2ϕ0Þ: ð30Þ

Due to the particular symmetry of the anomalous-Hall-
effect torques, the domain wall in F2 acquires the same
velocity: the motion of the coupled domain-wall system is
self-sustained. For small spacer thicknesses, the tilt angle is
large, and velocities comparable to the single-wall system
with a uniform tilted fixed polarizer can be reached.

IV. SUMMARY

In this paper, we develop a drift-diffusion approach to
treat transport effects of spin-orbit coupling in ferromag-
nets, i.e., include the anomalous Hall effect and the
anisotropic magnetoresistance. In addition to the transverse
charge currents that arise due to these effects, there are
concomitant spin currents. These spin currents flow per-
pendicularly to the electric field, and so can be injected into
layers perpendicular to the electrical current flow. When
these other layers are ferromagnets with magnetizations
that are not aligned with the original layer, they create spin-
transfer torques. Unlike the related spin Hall effect in
nonmagnetic materials, the ferromagnetic spin-orbit effects
allow some control of the orientation of the injected spins.
This control arises because the flowing spins in a ferro-
magnet are collinear with the magnetization. Changing the
orientation of the magnetization changes the direction of
the spins injected into other layers.
We compute the torques due to current flow for two

ferromagnet layers separated by a thin nonmagnetic layer.
The control of the direction of the injected spins makes it is
possible to switch perpendicularly magnetized layers more
easily because of the possibility of an out-of-plane com-
ponent of the torque. We also show that such torques
make it possible to switch in-plane magnetized layers via

propagation of transverse or vortex walls and can effi-
ciently induce dynamics in coupled magnetic systems, e.g.,
coupled transverse domain walls.

ACKNOWLEDGMENTS

The authors thank Robert McMichael for useful dis-
cussions. J. G. acknowledges funding from the European
Research Council, Grant No. 259068.

APPENDIX A: SOLUTION OF
ELECTROCHEMICAL POTENTIAL

AND SPIN ACCUMULATION

The x and z components of Eq. (6) are explicitly given
terms of μ̄ and δμ by

jx ¼ σEx þ
σAH
e

ð∂zμ̄Þmy þ σAMR

�
Exmx þ

1

e
ð∂zμ̄Þmz

�
mx

þ ζ
σAH
e

ð∂zδμÞmy þ η
σAMR

e
ð∂zδμÞmzmx; ðA1Þ

jz ¼
σ

e
∂zμ̄ − σAHExmy þ σAMR

�
Exmx þ

1

e
ð∂zμ̄Þmz

�
mz

þ β
σ

e
∂zδμþ η

σAMR

e
ð∂zδμÞm2

z : ðA2Þ

The continuity equation for electric current in steady
state, ∇ · j ¼ ∂zjz ¼ 0, requires ðσ þ σAMRm2

zÞμ̄ þ
ðβσ þ ησAMRm2

zÞδμ ¼ CzþDþ FðxÞ, where C and D
are the integral constants, whereas FðxÞ ∝ eExx. The
condition jz ¼ 0 implies C ¼ eðσAHmz − σAMRmzmxÞEx,
whereas the other integral constantD corresponds to a shift
of the chemical potential μshift. Then, the electrochemical
potential is

μ̄ ¼ μshift þ eExxþ
�
σAHmy − σAMRmzmx

σ þ σAMRm2
z

�
eExz

−
1

2

�
βσ þ ησAMRm2

z

σ þ σAMRm2
z

�
ðμ↑ − μ↓Þ: ðA3Þ

We assume that the spin accumulation obeys the diffusion
equation (8). The solution can be expressed as
μ↑ − μ↓ ¼ Aez=lsf þ Be−z=lsf . Two integral constants, A
and B, are determined as follows. Using Eq. (A3), the z
component of Eq. (7) is Eq. (9) and the spin current is
−½ℏ=ð2eÞ�ðj↑z − j↓z Þ. When the ferromagnet lies in the
region 0 ≤ z ≤ d, and the spin-current densities at z ¼ 0

and d are given by jð1Þsz and jð2Þsz , respectively, the integral
constants A and B are determined as
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~σδμ
2elsf

A ¼ 1

2 sinhðd=lsfÞ
×
h
jð1Þsz e−d=lsf − jð2Þsz − ~σEð1 − e−d=lsf ÞEx

i
;

ðA4Þ
~σδμ

2elsf
B ¼ 1

2 sinhðd=lsfÞ
×
h
jð1Þsz ed=lSF − jð2Þsz þ ~σEðed=lsf − 1ÞEx

i
: ðA5Þ

These results give Eq. (12). In the geometry shown in
Fig. 1, the spin current at the F-N interface is −m ·QF1→N

s

or p ·QF2→N
s , and it is zero at the outer boundaries. Using

these boundary conditions, Eq. (13) can be rewritten as
Eq. (14). Note that ðj↑z − j↓z Þ satisfies

e
∂ðj↑z − j↓z Þ

∂z
¼ ðσ þ σAMRm2

zÞ2 − ðβσ þ ησAMRm2
zÞ2

ðσ þ σAMRm2
zÞ

ðμ↑ − μ↓Þ
2l2

sf

;

ðA6Þ

which becomes ½e=ð1 − β2Þσ�∂ðj↑z − j↓z Þ=∂z ¼ δμ=l2
sf in

the absence of the AMR effect, reproducing the diffusion
equation in Ref. [63].

APPENDIX B: DETAILS OF THE CALCULATION

The spin current is calculated from Eqs. (14) and (17) by
assuming the conservation of the spin current inside the N
layer, i.e., QF1→N

s þQF2→N
s ¼ 0. This condition leads to the

following equations to determine the components of μN:

M

0
B@

μx

μy

μz

1
CA ¼ −

4πℏg�F2ðpÞ
2eg0sdðF2ÞðpÞ

tanh
�

d2
2lF2

sf

�
~σEðF2ÞðpÞExS

0
B@

px

py

pz

1
CAþ 4πℏg�F1ðmÞ

2eg0sdðF1ÞðmÞ tanh
�

d1
2lF1

sf

�
~σEðF1ÞðmÞExS

0
B@

mx

my

mz

1
CA: ðB1Þ

Here, the components of the 3 × 3 matrix M are given by

M1;1 ¼ g�F1m
2
x þ grðF1Þð1 −m2

xÞ þ g�F2p
2
x þ grðF2Þð1 − p2

xÞ; ðB2Þ

M1;2 ¼ ðg�F1 − grðF1ÞÞmxmy þ giðF1Þmz þ ðg�F2 − grðF2ÞÞpxpy þ giðF2Þpz; ðB3Þ

M1;3 ¼ ðg�F1 − grðF1ÞÞmzmx − giðF1Þmy þ ðg�F2 − grðF2ÞÞpzpx − giðF2Þpy; ðB4Þ

M2;1 ¼ ðg�F1 − grðF1ÞÞmxmy − giðF1Þmz þ ðg�F2 − grðF2ÞÞpxpy − giðF2Þpz; ðB5Þ

M2;2 ¼ g�F1m
2
y þ grðF1Þð1 −m2

yÞ þ g�F2p
2
y þ grðF2Þð1 − p2

yÞ; ðB6Þ

M2;3 ¼ ðg�F1 − grðF1ÞÞmymz þ giðF1Þmx þ ðg�F2 − grðF2ÞÞpypz þ giðF2Þpx; ðB7Þ

M3;1 ¼ ðg�F1 − grðF1ÞÞmzmx þ giðF1Þmy þ ðg�F2 − grðF2ÞÞpzpx þ giðF2Þpy; ðB8Þ

M3;2 ¼ ðg�F1 − grðF1ÞÞmymz − giðF1Þmx þ ðg�F2 − grðF2ÞÞpypz − giðF2Þpx; ðB9Þ

M3;3 ¼ g�F1m
2
z þ grðF1Þð1 −m2

zÞ þ g�F2p
2
z þ grðF2Þð1 − p2

zÞ: ðB10Þ

The solution of μN ¼ ðμx; μy; μzÞ can be obtained by calculating the inverse of M. In Eq. (B1), we added ðpÞ and ðmÞ
after g�, g0sd, and ~σE to emphasize that these quantities depend explicitly on the magnetization direction through
Eqs. (10), (11), (15), and (16). From μ, we evaluate the spin currents, Eqs. (14) and (17). The LLG equations for m and p
are, respectively, given by

dm
dt

¼ −γ0m ×Hþ γ0
μ0MsV

m × ðQF1→N
s ×mÞ þ αm ×

dm
dt

; ðB11Þ

dp
dt

¼ −γ0p ×Hþ γ0
μ0MsV

p × ðQF2→N
s × pÞ þ αp ×

dp
dt

; ðB12Þ
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where γ0 and α are the gyromagnetic ratio and Gilbert damping constant, respectively. The volume is V.

1. Special cases for the spin torque

Although it is possible to solve Eq. (B1) analytically for an arbitrary magnetization alignment, the solution looks
complicated. However, relatively simple analytical formulas can be obtained in some special cases. In this section, we
discuss such cases. Note that Eq. (B1) comes from the conservation law for spin current inside the normal metal layer,
QF1→N

s þQF2→N
s ¼ 0, which can be written as

g�F1ðm · μNÞmþ grðF1Þm × ðμN ×mÞ þ giðF1ÞμN ×m

þ g�F2ðp · μNÞpþ grðF2Þp × ðμN × pÞ þ giðF2ÞμN × p

¼ s1m − s2p; ðB13Þ

where sk ¼ ½4πℏg�Fk=ð2eg0sdðFkÞÞ� tanh½dk=ð2l
Fk
sf Þ� ~σEðFkÞExS (k ¼ 1, 2) [see Eq. (B1)]. We expand μN as

μN ¼ ammþ bmm × pþ cmm × ðp ×mÞ: ðB14Þ

Substituting this expression into Eq. (B13), and using the simplification gi ¼ 0, the coefficients am, bm, and cm are

am ¼ ½ðgrðF1Þ þ g�F2Þ þ ðgrðF2Þ − g�F2Þðm · pÞ2�s1 − ðgrðF1Þ þ grðF2ÞÞm · ps2
ðgrðF1Þ þ g�F2ÞðgrðF2Þ þ g�F1Þ − ðgrðF1Þ − g�F1ÞðgrðF2Þ − g�F2Þðm · pÞ2 ; ðB15Þ

bm ¼ 0; ðB16Þ

cm ¼ ðgrðF2Þ − g�F2Þm · ps1 − ðgrðF2Þ þ g�F1Þs2
ðgrðF1Þ þ g�F2ÞðgrðF2Þ þ g�F1Þ − ðgrðF1Þ − g�F1ÞðgrðF2Þ − g�F2Þðm · pÞ2 : ðB17Þ

The spin torque acting on the magnetization of the F1 layer, m, is ½γ0=ðμ0MsVÞ�m × ðQF1→N
s ×mÞ ¼

−½γ0gr=ð4πμ0MsVÞ�m × ðμN ×mÞ. Then, the coefficient cm and its direction m × ðp ×mÞ gives the spin torque. The
explicit form of the spin torque acting on m is

dm
dt

¼ γ0ℏEx

2eμ0Ms1d1
grðF1Þ

m × ðp ×mÞ
1 − λ1ðmÞλ2ðpÞðm · pÞ2

×

�
g�F2ðpÞ tanh½d2=ð2l

F2
sf Þ� ~σEðF2ÞðpÞ

g0sdðF2ÞðpÞ½grðF1Þ þ g�F2ðpÞ�
−
λ2g�F1ðmÞ tanh½d1=ð2lF1

sf Þ� ~σEðF1ÞðmÞ
g0sdðF1ÞðmÞ½grðF2Þ þ g�F1ðpÞ�

m · p

�
; ðB18Þ

where λk is defined by Eq. (22). Note that the conductance g� and g0sd, and therefore λ, depend on not only the material
parameters but also the magnetization direction when the anisotropic magnetoresistance effect is finite; see Eqs. (11), (15),
and (16). Also, ~σE depends on the magnetization direction, as shown in Eq. (10). Therefore, we add ðmÞ or ðpÞ after g�Fk,
gsdðFkÞ, ~σEðFkÞ, and λk to emphasize the fact that these quantities depend on the magnetization direction,m or p. Similarly, the
spin torque acting on the magnetization of the F2 layer is given by

dp
dt

¼ −
γ0ℏEx

2eμ0Ms2d2
grðF2Þ

p × ðm × pÞ
1 − λ1ðmÞλ2ðpÞðm · pÞ2

×

�
g�F1ðmÞ tanh½d1=ð2lF1

sf Þ� ~σEðF1ÞðmÞ
g0sdðF1ÞðmÞ½grðF2Þ þ g�F1ðmÞ� −

λ1g�F2ðpÞ tanh½d2=ð2l
F2
sf Þ� ~σEðF2ÞðpÞ

g0sdðF2ÞðpÞ½grðF1Þ þ g�F2ðmÞ� m · p

�
; ðB19Þ

These formulas can be simplified in the absence of the anisotropic magnetoresistance effect, which we show in the
following sections.
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a. When σAMR ¼ 0 and only the F2 has an anomalous Hall effect

In the absence of the anisotropic magnetoresistance effect, i.e., σAMR ¼ 0, g�, g0sd, and λ become independent from the
magnetization directions. In this section, we also assume that the material parameters are identical between two
ferromagnets, for simplicity. In this case, many of the derived parameters become independent of the layer and we suppress
those indices.
Since ~σE of the F1 layer is zero and that of the F2 layer is ~σEðF2Þ ¼ ðβ − ζÞσAHpy. The conductance gsd [Eq. (16)] and g�

[Eq. (15)] are independent of the magnetization direction because ~σδμ ¼ ð1 − β2Þσ is independent of the magnetization
direction. Then, from Eq. (B18), the spin torque acting on m is

dm
dt

¼ γ0ℏ
2eMsd

g�grðβ − ζÞ tanh½d=ð2lsfÞ�σAHEx

g0sdðgr þ g�Þ py
m × ðp ×mÞ
1 − λ2ðm · pÞ2 : ðB20Þ

Similarly, the spin torque acting on the F2 layer, p, is obtained from Eq. (B19) as

dp
dt

¼ γ0ℏ
2eμ0Msd

g�grðβ − ζÞ tanh½d=ð2lsfÞ�σAHEx

g0sdðgr þ g�Þ pyλm · p
p × ðm × pÞ
1 − λ2ðm · pÞ2 : ðB21Þ

b. When σAMR ¼ 0 and both the F1 and F2 layers show the anomalous Hall effect

In this case, ~σE of the F1 and F2 layers are given by ðβ − ζÞσmy and ðβ − ζÞσpy, respectively. The spin torques acting on
m and p are obtained from Eqs. (B18) and (B19) as

dm
dt

¼ γ0ℏ
2eμ0Msd

g�grðβ − ζÞ tanh½d=ð2lsfÞ�σAHEx

g0sdðgr þ g�Þ
�
py −myλm · p

1 − λ2ðm · pÞ2
�
m × ðp ×mÞ; ðB22Þ

dp
dt

¼ γ0ℏ
2eμ0Msd

g�grðβ − ζÞ tanh½d=ð2lsfÞ�σAHEx

g0sdðgr þ g�Þ
�
pyλm · p −my

1 − λ2ðm · pÞ2
�
p × ðm × pÞ: ðB23Þ

APPENDIX C: LINEARIZED LLG EQUATION

Linearizing the LLG equation (20) gives

1

γ0

d
dt

�
mx

my

�
þ C

�
mx

my

�
¼ ℏ tanh½d2=ð2lF2

sf Þ�Ex

2eμ0Msd1

g�F2grðF1Þ ~σEðF2Þ
g0sdðF2ÞðgrðF1Þ þ g�F2Þ

1

1 − λ1λ2p2
z

�
px

py

�
: ðC1Þ

The coefficient matrix C is given by

C ¼
�
αðHK −MsÞ ðHK −MsÞ
−ðHK −MsÞ αðHK −MsÞ

�

þ ℏ tanh½d2=ð2lF2
sf Þ�Ex

2eμ0Msd1

g�F2grðF1Þ ~σEðF2Þ
g0sdðF2ÞðgrðF1Þ þ g�F2Þ

0
B@

½1−λ1λ2ðp2
zþ2p2

xÞ�pz

ð1−λ1λ2p2
zÞ2 − 2λ1λ2pxpypz

ð1−λ1λ2p2
zÞ2

− 2λ1λ2pxpypz

ð1−λ1λ2p2
zÞ2

½1−λ1λ2ðp2
zþ2p2

yÞ�pz

ð1−λ1λ2p2
zÞ2

1
CA: ðC2Þ

The solutions of Eq. (C1) can be expressed as superpositions of expfγ0½�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½C� − ðTr½C�=2Þ2

p
− Tr½C�=2�tg. When the

real part of the exponent (∝ −γ0Tr½C�t) is positive (negative), the amplitude of mx and my increases (decreases) with time.
Then, we define the critical electric field to excite the magnetization dynamics by the condition Tr½C� ¼ 0. In terms of the
current density j ¼ σEx, the critical current density is given by Eq. (23).
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1. Optimum direction of p to minimize Eq. (23)

When the polarizing layer has only the anomalous Hall effect and no anisotropic magnetoresistance, the critical current,
Eq. (23), becomes

jAHcrit ¼ −
2αeμ0Msd1ðHK −MsÞ

ℏ tanh½d2=ð2lF2
sf Þ�

ð1 − λ1λ2p2
zÞ2g0sdðF2ÞðgrðF1Þ þ g�F2ÞσF2

ðβF2 − ζF2Þð1 − λ1λ2Þpypzg�F2grðF1ÞσAHðF2Þ
: ðC3Þ

This quantity is proportional to

jAHcrit ∝
ð1 − λ1λ2p2

zÞ2
pypz

; ðC4Þ

where λk is independent of the magnetization direction in this case. Then, jAHcrit is minimized when the polar angle θfixed is
given by

θfixed ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ1λ2 þ 2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3λ1λ2 − 2Þ2 þ 8λ1λ2

p
3λ1λ2 − 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3λ1λ2 − 2Þ2 þ 8λ1λ2

p
s �

: ðC5Þ

For the parameters shown in Fig. 4, the optimum angle is estimated to be θfixed ¼ 31.6°.
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