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In recent years, artificial neural networks have become the flagship 
algorithm of artificial intelligence1. In these systems, neuron 
activation functions are static, and computing is achieved through 
standard arithmetic operations. By contrast, a prominent branch 
of neuroinspired computing embraces the dynamical nature of the 
brain and proposes to endow each component of a neural network 
with dynamical functionality, such as oscillations, and to rely on 
emergent physical phenomena, such as synchronization2–6, for 
solving complex problems with small networks7–11. This approach 
is especially interesting for hardware implementations, because 
emerging nanoelectronic devices can provide compact and energy-
efficient nonlinear auto-oscillators that mimic the periodic spiking 
activity of biological neurons12–16. The dynamical couplings between 
oscillators can then be used to mediate the synaptic communication 
between the artificial neurons. One challenge for using nanodevices 
in this way is to achieve learning, which requires fine control and 
tuning of their coupled oscillations17; the dynamical features of 
nanodevices can be difficult to control and prone to noise and 
variability18. Here we show that the outstanding tunability of 
spintronic nano-oscillators—that is, the possibility of accurately 
controlling their frequency across a wide range, through electrical 
current and magnetic field—can be used to address this challenge. 
We successfully train a hardware network of four spin-torque nano-
oscillators to recognize spoken vowels by tuning their frequencies 
according to an automatic real-time learning rule. We show that the 
high experimental recognition rates stem from the ability of these 
oscillators to synchronize. Our results demonstrate that non-trivial 
pattern classification tasks can be achieved with small hardware 
neural networks by endowing them with nonlinear dynamical 
features such as oscillations and synchronization.

Spin-torque nano-oscillators are natural candidates for build-
ing hardware neural networks made of coupled nanoscale oscilla-
tors8–10,13,15,18,19. These nanoscale magnetic tunnel junctions emit 
microwave voltages when they are driven by direct-current injection 
in a regime of sustained magnetization precession through the effect 
of spin torque. In addition, they have exceptional capacities to syn-
chronize their rhythms to periodic electric and magnetic input signals 
and to other spin-torque nano-oscillators20–24. This property originates 
from the high tunability of their frequency, in other words, the large 
frequency changes induced by applied d.c. currents and magnetic fields. 
Single spin-torque nano-oscillators can achieve impressive cognitive 
computations25. However, it has not been shown experimentally that a 
coupled network of spin-torque nano-oscillators can learn to perform 
computational tasks through synchronization. Here, we use the ability 
of spin-torque nano-oscillators to modify their frequency in response 
to injected direct currents to train in real-time a network of coupled 
oscillators to categorize different input patterns into different synchro-
nization configurations2,17,18.

We transpose to hardware the neural network illustrated in Fig. 1a17 
with the set-up illustrated in Fig. 1b. The four neurons in Fig. 1a are 
experimentally implemented with four spin-torque nano-oscillators  
(Fig. 1b), in our case circular magnetic tunnel junctions with 
375 nm diameter and an FeB free layer with a vortex as ground state 
(see Methods)26. The double arrow connections between neurons 
(blue in Fig. 1a) indicate that the output of neuron i influences the 
behaviour of neuron j, and vice versa. We implement these symmetric 
neural interconnections by connecting electrically the four oscillators 
using millimetre-long wires as schematized in Fig. 1b: in this configu-
ration, the microwave current generated by each oscillator propagates 
in the electrical microwave loop and in turn influences the dynam-
ics, and in particular the frequency, of the other oscillators through 
the microwave spin-torques it creates24. The sum of all microwave 
emissions is detected by a spectrum analyser. Importantly, we can 
control the frequency of each oscillator by adjusting the direct cur-
rent flowing through each (see Methods and Extended Data Fig. 1). 
Here, for computing, we choose direct currents leading to close but 
not identical frequencies. The light blue curve in Fig. 1c shows a four-
peak spectrum typical of this regime of moderate coupling where the 
dynamics of the oscillators are correlated but do not lead to mutual 
synchronization.

The inputs to the neural network are encoded in the frequencies fA 
and fB of two fixed-amplitude microwave signals. Injected in a strip line 
fabricated above the active magnetic layers, they modify the dynamics 
of the oscillators through the radiofrequency magnetic fields they gen-
erate. Figure 1d shows that when the frequency of one of the microwave 
sources is swept, each oscillator synchronizes to the source in turn. 
Indeed, when the frequency of the source gets close to the frequency 
of one of the oscillators, the strong signal of the source pulls the adapt-
able frequency of the oscillator towards its own. In the locking range, 
the frequency of the oscillator becomes equal to the frequency of the 
source27. The dark blue curve in Fig. 1c shows an example of spectrum 
measured when the two microwave inputs are injected simultaneously. 
Two peaks (in red) appear at frequencies fA and fB owing to capacitive 
coupling with the strip line. In comparison to the spectrum without 
inputs (light blue curve), the emission peaks of oscillators 1 and 2 are 
pulled towards fA, whereas oscillator 4 is phase-locked to input B (its 
emission peak merges with the one of input B at fB). We label this syn-
chronization configuration as (4B).

The possible outputs of the neural network, represented in different 
colours in Fig. 1e, are the different synchronization configurations that 
appear for different frequencies of the two input signals, keeping the 
direct currents through the oscillators fixed. Depending on the fre-
quencies of inputs, zero (grey regions), one, or two oscillators are phase-
locked. For example, in the petrol-blue region labelled (2A), oscillator 
2 is synchronized to input A. In the white region labelled (1A,3B), 
oscillators 1 and 3 are synchronized to inputs A and B, respectively.
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We now describe how this neural network can recognize patterns 
by classifying spoken vowels, which are naturally characterized by 
frequencies called formants28. We use as input data a subset of the 
Hillenbrand database (available at https://homepages.wmich.edu/~hil-
lenbr/voweldata.html; see Supplementary Information) comprising 
seven vowels pronounced by 37 different female speakers, where each 
vowel is characterized by 12 different frequencies. Formant frequencies 
are typically in the range between 500 Hz and 3,500 Hz, so a trans-
formation is needed to obtain input frequencies (fA, fB) in the range 
of operation of our oscillators, between 325 MHz and 380 MHz. As 
detailed in Methods, we obtain fA and fB through two different lin-
ear combinations of the 12 formant frequencies that fit the grid-like 
geometry of the oscillator synchronization maps. In the resulting map 
shown in Fig. 1f, each point corresponds to one speaker. The spread 
in frequency for each vowel indicates that each speaker has a different 
pronunciation. Our goal is to recognize the vowel presented as input to 
the oscillator network independently of the speaker. For this purpose, 
the scattered points corresponding to each vowel pronounced by dif-
ferent speakers should all be contained inside a different region of the 
oscillator synchronization map in Fig. 1e.

As can be seen from Fig. 2a, in which the input vowel map and the 
oscillator synchronization map are superposed, initially they do not 
coincide: the initial oscillator frequencies have been set randomly and 
are not adequate to solve the problem. The oscillatory neural network 
must learn to perform the classification properly. During this training 
stage, the internal parameters of the network need to be finely tuned 
until each synchronization region encompasses the cloud of points  
corresponding to the vowel that it has been assigned. For this pur-
pose, we take advantage of the highly tunable nature of spin-torque 
nano-oscillators to modify the synchronization map by tuning the 
direct current through each oscillator, adapting a training algorithm 
first proposed in ref. 17. We have developed an automatic real-time 
learning procedure involving a feedback loop between the experimental 
setup and the computer that controls it (see Methods). At each training 
step, we consecutively apply seven inputs (fA, fB) to the oscillators, one 

for each vowel, randomly picked between the different speakers. The 
oscillator emissions corresponding to each of the seven input micro-
wave signals are recorded with a spectrum analyser. A computer iden-
tifies the corresponding synchronization states (see Methods). If all the 
seven vowels have been correctly classified in their assigned synchroni-
zation regions of the map (fA, fB), the direct currents are not changed. If 
one or several vowels have not been correctly classified, direct currents 
in the oscillators are modified to bring the assigned synchronization 
regions closer to the corresponding input frequency pairs (fA, fB) and 
thus reduce the classification error (see Methods). In the next learning 
step, another set of seven vowels is applied, and so on.

Figure 2 shows synchronization maps obtained at different stages 
of the training process (Fig. 2a–d), together with the evolution of the 
direct currents applied to the oscillators (Fig. 2e), their frequencies 
(Fig. 2f) and the average recognition rates for the seven vowels (Fig. 2g) 
(for a short video (20 s), see Supplementary Information or https://
youtu.be/bbRqqcxc-po; for a longer video (3 min 30 s), see https://
youtu.be/IHYnh0oJgOA). After 48 training steps, an optimum is found, 
direct currents and frequencies stop evolving, and the recognition rates 
stop increasing, signifying that the training process can be stopped. 
During training, we do not use all the vowels in the database. We always 
retain 20% of the vowels to test the ability of the system to recognize 
unknown data. The final recognition rates on the training and testing 
datasets reach values up to 89% and 88%, respectively (Fig. 2g).

We now interpret these experimental recognition rates by compar-
ing them to the performances that can be achieved with ideal oscil-
lators trained on the same task with the same learning process. For 
this purpose, we model the oscillator dynamics with coupled van der 
Pol equations accounting for their collective magnetization coor-
dinates (see Supplementary Information)20. The simulated oscilla-
tors are noiseless and differ only by a 2% mismatch in their natural  
frequencies, analogous to the one observed experimentally. We first 
vary their ability to synchronize by modifying their frequency tuna-
bility (see Supplementary Information). Black circles in Fig. 3a show 
the recognition rate of the ideal simulated network as a function of the 
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Fig. 1 | Approach for pattern classification with coupled spin-torque 
nano-oscillators. a, Schematic of the emulated neural network.  
b, Schematic of the experimental set-up with four spin-torque nano-
oscillators electrically connected in series and coupled through their own 
emitted microwave currents. Two microwave signals encoding information 
in their frequencies fA and fB are applied as inputs to the system through a 
strip line, which translates into two microwave fields. The total microwave 
output of the oscillator network is recorded with a spectrum analyser. 
c, Microwave output emitted by the network of four oscillators without 
(light blue) and with (dark blue) the two microwave signals applied to 
the system. The two curves have been shifted vertically for clarity. The 
four peaks in the light blue curve correspond to the emissions of the four 

oscillators. The two narrow red peaks in the dark blue curve correspond to 
the external microwave signals with frequencies fA and fB. d, Evolution of 
the four oscillator frequencies when the frequency of external source A is 
swept. One after the other, the oscillators phase-lock to the external input 
when the frequency of the source approaches their natural frequency. In 
the locking range, the oscillator frequency is equal to the input frequency. 
e, Experimental synchronization map as a function of the frequencies 
of the external signals fA and fB. Each colour corresponds to a different 
synchronization state. f, Inputs applied to the system, represented in the 
(fA, fB) plane. Each colour corresponds to a different spoken vowel, and 
each data point corresponds to a different speaker.
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average locking range of the oscillators normalized by their frequency 
difference. The recognition rate increases linearly with the oscillator 
locking ranges (see dotted blue linear fit in Fig. 3a). Indeed, as shown 
in the simulated maps of Fig. 3b, when the oscillator locking ranges 
increase, the regions of synchronization grow, thus encompassing and 
classifying an increasing number of points in each of the different vowel 
clouds. As shown in Fig. 3c, d, the mutual coupling between oscillators 
also enhances their locking ranges27, leading to increased recognition 
rates when the mutual interactions increase. The red star in Fig. 3a 
pinpoints where the experimental result features in this graph. The 
experimental vowel recognition rate of 89% is close to the maximum 
recognition rate of 94% that can be achieved with the same neural 

network composed of ideal, noiseless oscillators. This high perfor-
mance is due to the large experimental locking ranges resulting from 
the high tunability, coupling and low noise of the hardware spin-torque 
nano-oscillators.

We then compare the dynamical oscillator-based neural network 
studied in this paper to more conventional forms of neural networks. 
For this purpose, we first extract a reference value for the experimen-
tal recognition rate by repeating the training procedure experimen-
tally several times with different combinations of training and testing 
sets (see Methods). This cross-validation technique yields an average 
value of 84.3% for the experimental recognition rate on the testing set 
that we can compare to other neural networks performances. First, we 
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Fig. 2 | Learning to classify patterns by tuning the frequencies of 
oscillators. a–d, Experimental synchronization map as a function of 
the frequencies of the external signals, at different steps of the training 
procedure: a, step 0; b, step 7; c, step 15; and d, step 86. The coloured dots 
represent the inputs applied to the oscillatory network: vowels pronounced 
by different speakers. Different vowels are shown in different colours.  

A video is provided as Supplementary Information. e, Direct current 
applied through each oscillator as a function of the number of training 
steps. f, Frequency of each oscillator as a function of the number of 
training steps. g, Recognition rates obtained with the sets of data points 
used for training and for testing, as a function of the number of training 
steps.
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Fig. 3 | Comparing the recognition rates of experimental and 
ideal oscillators. Simulations of vowel recognition with a network 
of four identical oscillators trained with the same procedure as in the 
experiments are illustrated, in the absence of noise. The simulated 
oscillators differ only by a 2% mismatch in their natural frequencies.  
a, Recognition rate on the training set (black circles) as a function of the 
average oscillator locking range normalized by the frequency difference 
between oscillators (LR/FD). The locking range is varied by modifying 
the tunability of the oscillator frequency. The blue dotted line is a linear 

fit to the simulation results. The red star indicates where experimental 
oscillators feature in this graph. b, Synchronization maps simulated 
with the network of oscillators used in a, for three different values of 
the normalized locking range. c, Recognition rate on the training set 
(black circles) as a function of the mutual coupling between oscillators 
normalized by their coupling to the microwave inputs. The blue dotted line 
is a linear fit to the simulation results. d, Synchronization maps simulated 
with the network of oscillators used in c, for three different values of the 
normalized coupling ε.
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consider a conventional, static, multi-layer neural network. This kind 
of network can achieve better-than-human recognition rates at complex 
tasks, such as image classification. This performance, however, comes at 
the expense of the large number of parameters that need to be trained, 
a major hurdle for hardware implementation. Figure 4b shows the rec-
ognition rate of a multilayer perceptron, trained in software through 
backpropagation on the same database as the experimental neural net-
work, with 30,000 vowel presentations (see Methods). As illustrated in 
Fig. 4a, this network, composed of static neurons, takes as inputs the 
12 formant frequencies characterizing each pronounced vowel. The 
hidden layer neurons receive a weighted sum of these inputs (plus a bias 
term). The output layer, with softmax activation functions, has seven 
neurons, one for each vowel class (see Methods). As can be seen in 
Fig. 4b, the recognition rate is excellent, reaching 97% when the num-
ber of trained parameters is large (synaptic weights illustrated in red in 
Fig. 4a). However, the performance rapidly degrades for small numbers 
of trained parameters, diving below 65% for 27 trained parameters. This 
result is quite general: as can be seen from Extended Data Fig. 2, state-
of-the-art networks with feedback such as standard recurrent neural 
networks or long short-term memory networks have limited perfor-
mance when the number of trained parameters is small. In contrast, 
the recognition rate of our experimental oscillatory neural network is 
over 84% for only 30 trained parameters: as illustrated in red in Fig. 4c, 
the 26 weights converting formants to inputs, and the currents through 
the oscillators. For an ideal, noiseless, oscillatory network, the success 
rate reaches 89% after cross-validation. The network also learns rap-
idly (350 vowel presentations are used). This high performance with a 
small number of trained parameters comes from the combination of 
two phenomena: as shown in Fig. 3c, the oscillatory network can do 
better than the sum of its individual components, owing to its complex, 
coupled, dynamical features, and in addition, the oscillators collectively 
contribute to pattern recognition by synchronizing to the inputs. This 
result shows that the performance of hardware neural networks can be 
boosted by enhancing neuron functionalities beyond simple nonlinear 
activation functions, through oscillations and synchronization.

In the future, such dynamical neural networks will have to be scaled up 
to solve challenging classification problems on software-benchmarked  
databases. Spin-torque nano-oscillators offer numerous advantages 
towards this goal. Their energy consumption is comparable to or 
lower than complementary metal–oxide–semiconductor (CMOS)  
oscillators, and contrary to the latter, their lateral dimensions can be 
scaled down to a few nanometres in diameter (a detailed comparison 
is presented in Extended Data Table 2). Their quality factor can exceed 
several thousands26, and their natural frequency can be controlled by 
the aspect ratio of the magnetic dot from hundreds of megahertz to 
several gigahertz in small pillars, opening the path to nano-oscillators  
assemblies with a wide range of natural frequencies19. In addition, their 
simple structure is similar to spin-torque magnetic random access 
memory cells, which means that they can be produced by billions 

on top of CMOS. Finally, their synchronization can be detected with 
CMOS circuits that count the number of oscillations29 or measure the 
additional d.c. voltages produced by the oscillators when they phase-
lock (see Methods and Extended Data Fig. 3)30. Therefore, the wide 
variety of possible magnetic and electric couplings offered by spin-
tronics21–24, and the different ways of driving and controlling mag-
netization dynamics (spin torques, spin–orbit torques, electric fields), 
could be exploited in the future to implement large-scale hardware 
neural networks15.
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Methods
Samples. Magnetic tunnel junction (MTJ) films with a stacking structure  
of buffer/PtMn(15)/Co71Fe29(2.5)/Ru(0.9)/Co60Fe20B20(1.6)/Co70Fe30(0.8)/MgO(1)/
Fe80B20(6)/MgO(1)/Ta(8)/Ru(7) (thicknesses in nm) were prepared by ultrahigh- 
vacuum (UHV) magnetron sputtering. After annealing at 360 °C for 1 h, the resistance– 
area product was RA ≈ 3.6 Ω μm2. Circular-shaped MTJs with a diameter of about 
375 nm were patterned using Ar ion etching and e-beam lithography. The resistance 
of the samples is close to 40 Ω, and the magneto-resistance ratio is about 100% at 
room temperature. The FeB layer presents a structure with a single magnetic vortex 
as the ground state for the dimensions used here. In a small region called the vortex 
core (of about 12 nm diameter at remanence for our materials), the magnetization 
spirals out of plane. Under direct current injection and the action of the spin transfer 
torques, the core of the vortex steadily gyrates around the centre of the dot with a 
frequency in the range of 150 MHz to 450 MHz for the oscillators we used here.
Database and inputs. In this study, we classify seven spoken vowels with the oscilla-
tory network. Spoken vowels are characterized by a set of frequencies called formants, 
which we obtain from a subset of the Hillenbrand database (https://homepages.
wmich.edu/~hillenbr/voweldata.html) given in Supplementary Information. We 
use the first three formants (F1, F2 and F3) sampled at four different times of the 
duration of the spoken vowel: at the steady state and at 20%, 50% and 80% of the 
vowel duration (that is, 12 parameters in total). When one of these 12 parameters 
could not be measured, or when irresolvable formants mergers occurred, Hillenbrand  
et al.28 put a zero in this parameter in the database. For our study, we have removed 
the vowel utterances whose corresponding set of formants is not complete. Moreover, 
we use the same number of speakers for each vowel. The resulting formant database 
comprising 37 female speakers that we used is provided as Supplementary Data.

We perform two linear combinations of these formants to obtain two characteristic  
frequencies (fA and fB) in the range of operation of the spin-torque nano-oscillators  
(between 325 MHz and 380 MHz for the applied field value that we are using):
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To choose the coefficients of the two linear combinations, we first record an experi-
mental synchronization map that is used as a calibration of the network. The calibra-
tion map allows to assign a synchronization pattern to each vowel. Then, the linear 
transformation of the formants that best matches the data points of each vowel with 
its associated synchronization pattern is determined through fitting by least-square 
regression. The coefficients used in the two linear combinations and the two fre-
quencies fA and fB corresponding to each vowel are provided as Supplementary Data.

Once this calibration is done and the coefficients and characteristic frequencies 
are calculated, the direct currents are reset to random values to begin the learning 
experiment. Two fixed-amplitude microwave signals with frequencies fA and fB are 
used as inputs to the experimental network of coupled nano-oscillators.
Experimental set-up. Extended Data Fig. 1 shows a schematic of the experimental 
set-up with the four coupled vortex nano-oscillators. A magnetic field of µ0H = 530 
mT is applied perpendicularly to the oscillator layers to get an efficient spin transfer 
torque acting on the oscillator vortex core. A direct current is injected into each 
oscillator to induce vortex dynamics, which leads to periodic oscillations of the 
magnetoresistance, giving rise to an oscillating voltage at the same frequency than 
the vortex core dynamics. The four oscillators are electrically connected in series by 
millimetre-long wires. They are therefore coupled through the microwave currents 
they emit, and too far away to be coupled through the magnetic dipolar fields that 
they radiate. Four direct currents (IDC1, IDC2, IDC3, IDC4) are supplied to the circuit 
by four different sources, allowing an independent control of the current flow-
ing through each oscillator. The actual current flowing through each spin-torque 
oscillator is given by ISTO1 = IDC1, ISTO2 = IDC2 + IDC1, ISTO3 = IDC3 + IDC2 + IDC1 
and ISTO4 = IDC4 + IDC3 + IDC2 + IDC1, respectively, where ISTOi corresponds to the 
current flowing through the ith oscillator. Two microwave sources are used to inject 
two external microwave signals with frequencies fA and fB and power P = −9 dBm 
through a strip line, creating two microwave fields as inputs to the oscillator net-
work. The amplitude of the generated magnetic field, set by Ampere’s law, depends 
only on the cross-section of the antenna (in addition to the distance between the 
strip line and the active magnetic layer of the oscillators). Therefore, the length of 
the antenna is only set by the number of oscillators it should cover. In our case, the 
strip line has a width of 2.5 µm and is fabricated 370 nm above the pillar (separated 
by an insulating layer). The resulting input microwave fields have an amplitude of 

0.1 mT. They strongly affect the magnetization dynamics of the four oscillators, and 
thus the total microwave output emitted by the network. The microwave emissions 
are recorded with a spectrum analyser. As can be seen in Fig. 1d, the input signals 
from the antenna can be detected in addition to the oscillator emissions due to 
capacitive coupling between the strip line antenna and the metallic electrodes con-
necting the oscillator. The analysis of the output, which depends on the frequencies 
of the microwave inputs, can therefore easily be used to classify the spoken vowels.

Each spectrum recorded with the spectrum analyser is sent to the computer, where 
it is analysed by a program in real time. The information we use as input to this 
program is: (1) the value of the two frequencies of the external microwave signals 
(fA, fB) and (2) the oscillator frequencies at each direct current value in the absence 
of external microwave signals f f f f( , , , )1

0
2
0

3
0

4
0 . The output data that we extract from 

each spectrum analysis are the four values of the oscillator frequencies in the presence 
of microwave inputs. Then, another program takes these oscillator frequencies to 
calculate the synchronization states and check whether the applied vowel was prop-
erly recognized, as follows. If one of the detected frequencies coincides with the 
frequency of one of the external signals (±0.5 MHz), we consider that the oscillator 
is synchronized to it. From this analysis, the synchronization pattern that corresponds 
to the input vowel is calculated. This is compared to the synchronization pattern 
initially assigned to that specific vowel to check whether it was successfully classified.

If we are in the training procedure and the vowel is not properly classified, the 
online learning algorithm calculates how the four direct currents should be modi-
fied to reduce the recognition error, as described in ‘Real-time learning algorithm’ 
below. This information is then sent back to the experimental set-up, where the 
currents are automatically modified.
Real-time learning algorithm. In this section, we present the supervised learning pro-
cedure that was applied to our spin-torque nano-oscillator network to learn to recognize 
different classes of input stimuli. Here these classes correspond to seven different spoken 
English vowels: ae, ah, aw, er, ih, iy and uw (see ref. 28 for details; the sounds can be 
heard at https://homepages.wmich.edu/~hillenbr/voweldata.html). Initially, we assign 
a synchronization pattern to each class of vowel (column 2 in Extended Data Table 1).

For a perfect recognition of one class of vowel, all data points in the frequency 
input map that corresponds to this vowel (Fig. 1f) must be contained in their 
assigned synchronization pattern in the experimental map (Fig. 1e). If this is not 
the case, for each association spoken vowel-synchronization pattern we define a 
frequency difference vector with four components (one for each oscillator; see 
third column in Extended Data Table 1) that will be used in the learning procedure.

Starting from a random map configuration (Fig. 1e), the automatic learning rule 
that we developed allows us to converge to a configuration where most data points for 
each vowel class are contained in their respective assigned synchronization pattern. 
The learning rule works in the following way.

(1) We present to the network a randomly chosen input data point i belonging 
to one vowel class, by sending two microwave inputs with frequencies f i

A
 and f i

B
.

(2) From the resulting spectra, we extract the frequencies of the four spin-torque 
oscillators (f1, f2, f3, f4) in presence of the microwave inputs.

(3) We determine the resulting synchronization configurations by comparing 
the oscillator frequencies to the input frequencies f i

A
 and f i

B
. Then, we compare 

the obtained synchronization configuration with the one assigned to this vowel.
(4) For each vowel presented to the network, we define an associated frequency 

difference vector, which describes the frequency distance between the applied input 
and the assigned synchronization region. For instance, if the presented data point 
belongs to the vowel class ‘ae’, we compute = − −d f f f f[( ), 0, ( ), 0]i i

ae A 1 B 3
T.

If one of the two synchronization events assigned to ‘ae’ has occurred, we only 
compute the frequency difference that corresponds to the other event. For instance, 
if oscillator 1 is correctly synchronized to external source f i

A
, then we compute 

only = −d f f[0, 0, ( ), 0]i
ae B 3

T.
(5) We repeat steps (1) to (4) for all seven vowel classes.
(6) We compute the sign of the vector sum of all seven associated frequency differ-

ence vectors D: D = sgn(dae + dah + daw + der + dih + diy + duw) = (D1, D2, D3, D4)T.

(7) We then compute the new direct current set  ′ ′ ′ ′I I I I( , , , )1 2 3 4
T, which will be 

applied to the four oscillators:
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In this equation, μ = 0.1 mA is the learning rate of our algorithm. At each step, 
the applied direct current through each oscillator can be modified only by ±μ. 
Here ∂ /∂ =f Isgn[( ) ]k I Ik

 represents the sign of the frequency evolution versus 
injected direct current of the kth oscillator at the value of current Ik. For this, the 
frequency–current dependence of each independent oscillator has been previously 
characterized.

Upon modifying the direct currents following this learning procedure, the oscil-
lator frequencies change. This translates into a displacement of the synchronization 
patterns in the experimental synchronization map (Fig. 2a–d).

(8) We repeat all previous steps (steps (1) to (7)) N times, where N is the total 
number of training steps. At each iteration, the synchronization map evolves 
towards an optimal configuration where the global frequency difference vector 
dtot = dae + dah + daw + der + dih + diy + duw is minimized. On increasing the 
number of training steps, we observe an increase of the recognition rate until it 
saturates after step 48, reaching a value of 89% (Fig. 2f). In our training experiment, 
we set the maximum number of training steps to N = 87, which corresponds to 
applying three times each of the 29 data points of the training database.
Cross-validation procedure. Training was realized using 80% of the total number 
of vowels in the database. The testing procedure was done using the remaining 
20% data points. The cross-validation technique allows estimating accurately the 
recognition performances of the network by repeating the training/testing proce-
dure five times over distinct data point samples. Each time, the selected data points 
used for testing are different: in the first (respectively second, third, fourth and 
fifth) cross-validation period, we use the first (respectively second, third, fourth 
and fifth) quintile (20%) of the data points for testing. The final recognition rate 
was obtained by averaging the testing recognition rates of the five cross-validation 
experiments. The same cross-validation procedure is used for all the neural net-
works (experimental and simulated).
Comparison of spin-torque nano-oscillators to CMOS oscillators. Extended 
Data Table 2 compares features of CMOS and spin-torque nano-oscillators. ‘Vortex 
spin-torque oscillators’ refer to the magnetic tunnel junctions used in this study; 
‘10 nm spin-torque oscillators’ refer to state-of-the-art magnetic tunnel junctions 
currently used as memory cells.
Comparison with a multilayer perceptron. To benchmark the results of the 
experimental oscillatory network, we first ran a standard multi-layer perceptron, 
schematized in Fig. 4a, on the same vowel database.

The network takes as inputs the 12 formants of a given vowel in a database and 
has seven outputs, one for each vowel class. We have varied the number of hidden 
neurons between 1 and 20 to evaluate the recognition rate as a function of the 
number of trained parameters. More precisely, each formant has been rescaled 
between −1 and 1 before being fed into the first layer of neurons. The neuron 
activation functions are tanh functions at the hidden layer, and softmax at the 
output layer: the outputs zi (i = 1 to 7) are defined as = / ∑ =z e ei

y
j

y
1

7i j, where yj is 
the input to the output neuron j. The output with the largest zi is taken as the vowel 
class corresponding to the input. We also tried ReLU activation functions, but they 
performed worse than tanh on this task.

For training the network we performed backpropagation, that is, gradient 
descent over the negative log-likelihood (or cross entropy).

As in the experimental conditions, the samples are picked and presented ran-
domly to the network. One learning iteration corresponds to one forward pass 
of a given sample through the network, its subsequent gradient evaluation and 
weight update. The learning rate has been tuned to obtain the best result. Weights 
and biases before learning were randomly sampled from a Gaussian of mean 0 
and variance 0.01.

For each trial, we ran training over 100,000 iterations to ensure convergence 
with a learning rate of 0.05. In practice, optimization techniques such as root-
mean-square propagation or adaptive moment estimation could be used to accel-
erate training. All results are reported in Fig. 4b, where we show the recognition 
rate after cross validation as a function of the number of trained parameters.
Comparison with RNNs. In addition to the multilayer perceptron (Extended Data 
Fig. 2b), we also ran, on the same vowel database, a perceptron (Extended Data 
Fig. 2c), as well as a recurrent neural network (RNN; Extended Data Fig. 2d) and 
a long short-term memory network (LSTM) recurrent neural network (Extended 
Data Fig. 2e) with four hidden units. The procedure is similar to the multilayer 
perceptron. Formants are presented sequentially to the network which outputs 
a vowel once all of them have been swept through. Softmax activation functions 
were used at the output layer and tanh elsewhere. Outputs are encoded in a ‘one-
hot’ fashion: for example, the ae vowel (out of the seven in total) is encoded by 
(1,0,0,0,0,0,0). We take the maximum activation value as the classification result. 
As in the experimental conditions, the samples are picked and presented randomly 
to the network. One learning iteration corresponds to one forward pass of a given 
sample through the network, its subsequent gradient evaluation and weight update. 
For each architecture, the choice of the learning rate has been tuned to obtain the 
best result. Weights and biases before learning were randomly sampled from a 

Gaussian of mean 0 and variance 0.01. No gradient inertia or learning rate adapta-
tion technique was used. For the LSTM and the RNN, we ran training over 500,000 
and over 1,000,000 iterations to ensure convergence with a learning rate of 0.01 
and 0.0005, respectively. If needed, optimization techniques such as root-mean-
square propagation or adaptive moment estimation could be used to accelerate 
training. Owing to the mini-batch size, gradient descent is highly stochastic, and 
we average the test and training rates over the last 5,000 iterations to obtain reliable 
training and error rate for a given trial. All results are reported in Extended Data 
Fig. 2a where we show the cross-validation success as a function of the number 
of parameters learnt.
Synchronization detection through oscillator rectified voltages. In the present 
work, synchronization of the oscillators is detected using a spectrum analyser, 
allowing a comprehensive understanding of the systems and of the physics of the 
oscillators. In a final integrated system, simpler techniques could be used to detect 
synchronization of oscillators. A possibility is given in ref. 29. Another method, 
involving less energy overhead, consists in exploiting the spin diode effect31, 
which causes synchronized oscillators to generate a supplementary direct volt-
age32. Extended Data Fig. 3a and b illustrates this effect in one of our oscillators. 
The appearance of a rectified voltage measured between the oscillator electrodes 
(Extended Data Fig. 3a) coincides with the locking range (Extended Data Fig. 3b). 
The generated rectified voltage is proportional to the fraction of the external micro-
wave current Iext flowing through the oscillator30,32. In our experiments, Iext is small: 
the input microwave signals are sent though a strip line isolated from the oscilla-
tors, in a geometry minimizing by design the capacitive coupling between oscillator 
and strip line (Iext = 7.5 × 10−3Istripline). As a result, the measured rectified voltages 
are small (approximately 0.5 mV). In the future, these values can be increased up 
to several tens of millivolts by optimizing the coupling between oscillator and strip 
line. Indeed, as demonstrated experimentally, rectification effects due to oscillator 
phase locking can be large, with sensitivities reaching 75.4 mV for the generated 
d.c. voltage per microwatt of injected microwave power30.

We now present how synchronization detection through the resulting rectified 
voltages may be implemented in a final integrated circuit, using a differential 
method. We propose to use four reference resistors with the same resistance as 
the mean resistance of the nano-oscillators and polarized in the same manner. 
Comparing the voltage across a nano-oscillator and the corresponding reference 
resistance then allows detection of whether the oscillator is experiencing syn-
chronization (Extended Data Fig. 3c). We designed a simple two-stage CMOS 
circuit to perform this comparison (Extended Data Fig. 3d,e). The first stage 
is composed of two differential amplifiers (voltage to current) in parallel. It is 
followed by a gain stage (current to voltage amplifier). The mismatch between 
the two amplifiers, a standard design technique, allows high gain. The output 
of the circuit is therefore a binary voltage, high if the oscillator is synchronized 
to the input signal, low otherwise. This voltage can be used directly by standard 
CMOS digital circuit to obtain the class of the input. In the circuit, bias voltages 
(Vbias1 and Vbias2) can be adjusted to vary the speed and power consumption of 
the circuit.

We simulated this circuit in transient operation using the Cadence Spectre 
SPICE simulator, a standard tool in commercial integrated circuit design, with 
the design kit of a 28-nanometre commercial CMOS technology, and optimized the 
bias voltages for minimal energy consumption, while retaining a response time of 
the circuit below 600 ns. Extended Data Fig. 3f shows the energy consumed by the 
detection circuit as a function of the rectified direct voltage due to synchronization, 
taking into account the whole transient of the detection. This energy can be low: it 
is below 200 fJ for rectified direct voltages above 50 mV, which can be achieved in 
structures optimized for spin diode effect30. For a full system, this detection must 
be performed twice (we send two input signals), for the four oscillators, leading to 
a detection energy of 2 × 4 × 200 fJ = 1.6 pJ.

Using our current oscillators, this energy would be smaller than the energy 
dissipated by the oscillators and the reference resistors. By contrast, with scaled 
nano-oscillators (see Extended Data Table 2), this 1.6 pJ detection energy would 
become dominant.

It is interesting to compare this quantity with the energy consumption of a 
purely CMOS neural network, implementing the multilayer perceptron of Fig. 4a. 
Optimized CMOS neural networks compute in reduced precision, usually 8-bit 
integers, which allows low energy consumption33. Taking into account the arith-
metic operations (sum and multiplications), in the same commercial 28-nanometre 
technology as the detection circuit that we implemented, we calculated that an 8-bit 
integer neural network implementing the second layer of the neural network of 
Fig. 4a consumes 2.2 pJ. We only took into account the second layer of the neu-
ral network, as it is the part implemented by the nano-oscillators. To obtain the 
energy estimation, we synthesized a Verilog description of a multiply and accu-
mulate block and computed its energy consumption with the Cadence encounter 
tools using appropriate value change dump files generated by the Cadence ncsim 
simulator.
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These energy considerations show that on our tiny control system, a nano- 
oscillator-based solution would provide an energy consumption slightly smaller 
than an optimized CMOS-based solution. We expect that the full benefit of 
the oscillator system will appear in deep networks composed of many layers of  
spin-torque nano-oscillators. Indeed, cascading the synchronization states from 
one layer to the next can be achieved directly through oscillatory interlayer 
coupling and does not require synchronization detection. Only at the last layer 
will detection circuits be required to communicate their state to other circuits. 
Therefore, we expect that in a deep network of oscillators, the energy consumption 
will be largely dominated by the oscillator energy consumption, which can be low 
for a scaled-down oscillator, as can be seen from Extended Data Table 2.

Data availability
The datasets generated and analysed during this study are available from the cor-
responding authors on reasonable request.
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Extended Data Fig. 1 | Schematic of the experimental set-up. The four coupled vortex nano-oscillators are shown. IRFA and IRFB are the microwave 
currents injected in the strip line by the two microwave sources. HRF is the resulting microwave field. IDC1–4 are the applied direct currents.
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Extended Data Fig. 2 | Recognition rates obtained by different neural 
networks on the formant database. a, Recognition rates of different 
neural networks on the formant database as a function of the number of 

trained parameters. b–e, Schematics of the simulated neural networks:  
b, multi-layer perceptron; c, perceptron; d, RNN; and e, LSTM.
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Extended Data Fig. 3 | Synchronization detection by the spin diode 
effect. a, Rectified direct voltage measured between oscillator electrodes 
when the external microwave signal is injected in the strip line above the 
oscillator and its frequency is swept. Here, the direct current through the 
oscillator is 5 mA, the magnetic field is 585 mT and the injected microwave 
power is +1 dBm. b, Oscillator spectrum emission measured during 
the same frequency sweep as a. c, Proposed differential measurement 

configuration for CMOS-based detection of synchronization-induced 
rectified voltages. d, Two-stage CMOS circuit. e, The first stage, composed 
of two differential amplifiers (green), is followed by a gain stage (blue). 
VDD, supply voltage; GND, ground. f, Energy consumption of the CMOS 
circuit for one synchronization detection event, as a function of the 
amplitude of the generated rectified direct voltages.
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Extended Data Table 1 | Learning rule

Column 1, spoken vowel class; column 2, synchronization pattern assigned to each vowel; column 3, frequency difference vector between the spoken vowels and their associated patterns.  
The index i refers to the ith data point of a vowel class (ith speaker).
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Extended Data Table 2 | Comparison of CMOS and spin-torque nano-oscillators for neuromorphic computing

Data from refs 24,34–39.
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