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We study resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned
at notches in ferromagnetic nanostrips. We demonstrate that a mode’s sensitivity to notches depends strongly
on the mode’s characteristics. For example, the frequencies of modes that involve lateral motion of the wall are
the most sensitive to changes in the notch intrusion depth, especially at the narrow, more strongly confined end
of the domain wall. In contrast, the breathing mode, whose dynamics are concentrated away from the notches
is relatively insensitive to changes in the notches’ sizes. We also demonstrate a sharp drop in the translational
mode’s frequency towards zero when approaching depinning which is confirmed, using a harmonic oscillator
model, to be consistent with a reduction in the local slope of the notch-induced confining potential at its edge.
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I. INTRODUCTION

Domain walls (DWs) are (typically nanoscale) transition
regions which separate oppositely oriented magnetic domains
in ferromagnetic materials. Many promising future applica-
tions of DWs rely on the current-driven displacement or
resonant excitation of DWs in ferromagnetic nanostrips, the
latter representing a type of DW conduit. The range of DW
applications is broad and includes spintronic memristors which
use DW displacements to control device resistances [1,2],
next generation logic [3], and data storage [4] devices (the
latter often relying on DW-based shift registers [5]) and
devices for the capture and transport of magnetic microbeads
with envisioned use in biotechnology [6,7]. Resonant DW
excitations [8] refer to resonant precessional magnetization
dynamics localized at a DW [8–21]. These excitations have
been shown to have the potential to be exploited in numerous
areas of device-focused research, including the design of
radio-frequency electronic oscillators [22], enabling control
over spin wave propagation in magnonic devices [23,24],
and assisting with DW motion [25–29] and DW depinning
[11,12,30–32], the latter via resonant excitation of a DW within
a pinning (or “trapping”) potential.

The ability to exploit resonant phenomena in applications
will, however, rely on successful control of the resonant modes
of DWs. It is known that large geometrical constrictions such
as notches (also widely used for positional control [5,33–36])
in micron-scale strips can be used to tune the frequency
of a DW’s translational mode [22]. For smaller [37] device
geometries, however, uniform fabrication of small notches may
become challenging since the notches’ dimensions will likely
become comparable to those characteristic of edge roughness
or lithographic defects.

In this work we show how different DW resonances have
different sensitivities to notches and that these sensitivities can
be linked to the nature of the mode and the structure of the
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DW. For example, modes which involve either local or global
translation of the wall can be highly sensitive to the presence,
size, and position of the notch. Our work focuses in particular
on the resonant properties of pinned head-to-head transverse
domain walls [TDWs, Fig. 1(a)] which arise in thin, narrow,
in-plane magnetized strips [38]. Here, the TDWs are pinned at
triangular notches located on the edges of the strip. We use a
numerical eigenmode method to study three TDW resonances,
corresponding to translational [10,11,22,39], twisting [16,40],
and breathing [10,41–45] excitations of the TDW. The latter
mode has recently been studied for oscillator applications [46]
and we demonstrate that this mode has the lowest sensitivity
to changes in notch depths, making it an appealing choice
when fabricating devices with robust resonant frequencies.
The eigenmode method we use also enables the study of
the translational mode in the vicinity of the static depinning
field where we find a sharp drop-off in this mode’s frequency.
This dramatic change in frequency can be linked directly to
the position dependence of the slope of the notch-induced
confining potential which, as done in experiment [13,47], we
probe via field-induced displacements of the TDW within the
potential.

II. MICROMAGNETIC SIMULATION METHOD

Many numerical studies of resonant modes in confined
geometries use time domain (“ringdown”) methods in which
Fourier analysis of precessional magnetization dynamics is
employed to extract resonant mode frequencies and spatial
profiles. These methods require the system to be subjected to
an external excitation [16,40,48–50], often a pulsed magnetic
field. In contrast, eigenmode methods [51,52] enable a direct
calculation of resonant magnetic modes from a system’s
equilibrium magnetic configuration, m0(r) (as do dynamical
matrix methods [53]). This enables the observation of the
full mode spectrum without requiring careful choice of the
ringdown excitation’s symmetry. It also enables us to study
DW modes at fields which are in the close neighborhood of the
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FIG. 1. (a) Zero-field equilibrium magnetization configuration, m0(r), in a 75-nm-wide NiFe strip with symmetric notches
(wnotch = 20 nm, dnotch = 10 nm) containing a head-to-head TDW with my color scaling. The black arrows indicate the local magnetization
direction. The x and y axis origins are also shown. (b)–(d) Snapshots of the translational, breathing, and twisting modes showing the dynamic
component only [dm(r)]. The translational mode snapshot (b) uses my color scaling and is taken when the TDW is displaced to the right (+x)
at which point there is a significant dynamic +mx component. The breathing mode snapshot (c) also uses my color scaling and is taken at the
point during the TDW width oscillation when the width is larger than its equilibrium value. There is thus a large dynamic +my component at
the TDW edges which broadens the TDW. The twisting mode snapshot (d) uses mx color scaling and is taken at the point when the wide end of
the TDW (+y) is displaced to the right and the narrow end of the TDW (−y) is displaced to the left (see also animations of the modes [57]).

static depinning field where excited translational resonances
could otherwise resonantly depin [11,12,30–32] the wall.

Our simulations were run on a Permalloy strip having
saturation magnetization MS = 860 kA/m and exchange
stiffness Aex = 13 pJ/m. The strip has tapered ends and two
central notches for TDW pinning [Fig. 1(a)]. Unless otherwise
noted, the notches are located at x = 0, the strip thickness
is 5 nm, and the total length is 750 nm. Simulations were
run using the finite element micromagnetic package, FINMAG,
which is the successor to NMAG [54] and is based on a similar
design.

Magnetic eigenmodes are determined from m0(r) with
FINMAG using a method similar to that described by d’Aquino
et al. [51] It is valid for small time-dependent oscillations,
dm(r,t), around m0(r) and has been used recently to model
ferromagnetic resonances in magnonic crystals [55]. The basic
principle is to linearize the (undamped) Landau-Lifshitz-
Gilbert (LLG) equation around the equilibrium state m0(r),
resulting in a linear system of ordinary differential equations
(ODEs) for the oscillations dm(r,t) which has the form
∂
∂t

dm(r,t) = A · dm(r,t) with a matrix A ∈ R3N×3N , where
N is the number of nodes in the finite element mesh [56].
This system of ODEs has a full set of solutions of the
form dm(r,t) = ei2πf tv(r). Each solution vector v ∈ C3N

represents an eigenmode of the nanostrip corresponding to
the frequency f ; its complex coefficients encode the local
amplitudes and relative phases of the eigenmode at the
mesh nodes. In theory, the eigenfrequencies f are purely
real. However, due to the formulation of the problem as a
non-Hermitian eigenvalue problem the eigensolver returns
complex solutions with a small imaginary component because
of numerical inaccuracies. We quote the real parts of f .
Eigenmodes localized at the TDW can be identified by visual
inspection of the spatially resolved eigenvectors. Either the
dynamic component, dm(r,t), may be inspected alone or it
can be scaled and added to m0(r), enabling a visualization
of the actual TDW dynamics for each mode (e.g., see mode
animations [57]).

To find m0(r), the system was initialized with a trial head-
to-head TDW configuration centered on x = 0 and allowed to

relax with damping parameter α = 1, typically until dm/dt <

1◦/ns at all points in the strip. For a strip width of 75 nm and a
thickness of 5 nm, using the stricter criterion dm/dt < 0.1◦/ns
resulted in changes in the mode frequencies of 1.1 MHz or less
(�0.04%). The relaxed configuration was a pinned TDW for
all studied geometries [38]. Note that the TDW [Fig. 1(a)] is
wider at the +y side of the strip which will be important for
determining TDW-notch interactions.

We used a nonuniform finite element meshing with a
characteristic internode length of lmesh = 3 nm at x = 0 (less
than the NiFe exchange length [58] of 5.7 nm). There was
a smooth transition to lmesh = 8 nm at the ends of the strip.
This reduces computational time and memory use. However,
a postrelaxation mesh coarsening [55] could potentially be
applied to future studies. We note that except for those sim-
ulations in which magnetic fields close to the DW depinning
field are applied, the error in the mode frequency associated
with the nonuniform meshing was less than 1%. However, as a
result of the nonuniform mesh, we present results only on those
modes which are localized on the TDW near the center of the
strip since modes associated with the domains themselves will
be in regions with lmesh close to or larger than the exchange
length. This said, such modes (typically occurring at multiple
gigahertz) can be excited in experiment together with the DW
modes [21].

III. TDW MODES

The three lowest frequency TDW modes correspond
to translational, breathing, or twisting deformations. In
Figs. 1(b)–1(d) these three calculated modes are shown [as a
snapshot of the mode’s dynamic component, dm(r,t) at a time
such that dm(r,t) is large] for a 75-nm strip with symmetric,
triangular notches, each with width wnotch = 20 nm and a depth
of intrusion into the strip, dnotch = 10 nm. The translational
mode (2.70 GHz) corresponds to an oscillatory, side-to-side
motion of the TDW away from the notches [Fig. 1(b)]. For the
breathing mode [10,40–45] [6.57 GHz, Fig. 1(c)], dynamics
are concentrated at the edges of the domain wall with the
excitations mirrored around x = 0. The dynamics of this mode
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result in an oscillatory change in the TDW’s width as a function
of time. For this strip width, the highest frequency mode is
the 7.03 GHz twisting mode [Fig. 1(d)]. This mode involves
the TDW’s two ends (at the top/bottom of the strip) moving
laterally but in opposite directions. Idealizing the TDW as a
string crossing the nanostrip, this mode has similarities to a
standing wave with a zero-displacement node (dm ≈ 0) near
y = 0. As shown below, and in contrast to what is observed
for the translational mode, a finite frequency for the breathing
and twisting modes is nonreliant on confinement (i.e., they are
intrinsic f > 0 TDW excitations). Indeed, Wang et al. [40]
have observed what appear to be similar breathing and twisting
modes for unpinned TDWs.

We now confirm that the frequencies of the translational
and breathing modes obtained using the eigenmode method
have good consistency with those obtained via a time domain
ringdown method. To do this, we applied external excitation
fields to the system which had the correct symmetry to couple
to each of these two modes (we note, however, that we were
not able to efficiently excite the twisting mode with either
uniform or nonuniform excitations [59]). For the translational
mode, we applied an excitation field in the x direction: x

fields will displace the wall and thus can be used to couple
to the translational mode. For the breathing mode, we applied
a field in the y direction which acts to increase the TDW
width, thus coupling to the breathing mode’s width oscil-
lation. Fourier analysis of the resultant ringdown dynamics
[mx(t) for ftrans and my(t) for fbreathe] at a strip width of
80 nm demonstrated successful field-induced excitation of the
translational and breathing modes at ftrans = 2.6 ± 0.1 GHz
and fbreathe = 6.4 ± 0.1 GHz. These frequencies are in good
agreement with the eigenmode results of ftrans = 2.61 GHz
and fbreathe = 6.38 GHz for w = 80 nm (as per Fig. 5 which
will be discussed later with regard to strip-width dependence
of the mode frequencies).

Although this work does not attempt to address spin-torque-
driven autooscillations associated with the TDW modes, radio-
frequency magnetic fields (or effective fields associated with
spin torques) having symmetries as discussed above can be
used experimentally to drive the breathing and translational
modes. This could be achieved using x or y oriented (real
or effective) magnetic fields generated by striplines [18]
(x or y), Oersted fields due to in-plane current injection
[60] (y) or tailorable [61] Slonczewski or fieldlike spin
torques (x or y) under perpendicular current injection in
magnetic tunnel junctions (MTJs) [21,62–64] and all-metallic
magnetoresistive stacks [65]. Indeed, Lequeux et al. [21]
recently observed the translational mode under microwave
frequency current injection in a MTJ. Numerous other studies
have also demonstrated the excitation of the translational mode
using spin torques due to in-plane current injection [8,11,22]
and new possibilities exist with regard to the use of spin-orbit
torques [66–68].

A. Notch dependence

We now examine the dependence of the modes on the size
of the notches used to pin the TDW. The translational and
twisting modes both involve some movement of the TDW
away from the energetically favorable x = 0 position. This can

FIG. 2. (a), (b) TDW eigenfrequencies versus dnotch when varying
dnotch for both notches simultaneously. (c), (d) Eigenfrequencies when
varying dnotch only at one side of the strip, either at the wide end or
narrow end of the wall while keeping the other notch with dnotch =
10 nm. For all data wnotch = 20.

either be a global side-to-side movement of the TDW (as for
the translational mode) or a local side-to-side movement (as for
the twisting mode where out of phase lateral TDW movements
arise at opposite edges of the strip). Lateral movement has
strong implications for notch sensitivity: both the twisting
and translational modes have a strong dependence on the
notch size. In contrast, dynamics of the breathing mode are
concentrated at the lateral edges of the TDW structure (and
thus away from the central notches) which results in a much
weaker sensitivity to the notch and changes to it.

To demonstrate the different sensitivities of each mode
to notch size, we have plotted each TDW eigenfrequency in
Figs. 2(a) and 2(b) as a function of the notches’ intrusion depths
for a 75-nm-wide strip with 20-nm-(=wnotch) wide notches
(both notches have the same geometry on the two sides of
the strip). One will notice immediately that the twisting and
translational modes (i.e., those with a translational nature)
are highly dependent on dnotch. The translational mode’s
frequency, ftrans, decreases smoothly with dnotch, going to zero
at dnotch = 0 [Fig. 2(a)]. This latter result is consistent with the
wall being free to translate laterally at ftrans = 0 in the absence
of pinning (i.e., dnotch = 0 corresponds to a smooth-edged
strip with no notches). The twisting mode frequency, ftwist,
also depends quite strongly on dnotch, reducing by ∼40%
(∼2 GHz) when changing dnotch from 20 to 0 nm [Fig. 2(b)].
In contrast, the breathing mode frequency, fbreathe, changes by
only 1.5% over the same range of dnotch values [Fig. 2(b)].
Note also in Fig. 2(b) that fbreathe and ftwist remain finite at
dnotch = 0, consistent with these modes being intrinsic TDW
excitations for which the observation of a finite eigenfrequency
is nonreliant on notch-induced, lateral TDW confinement.

Despite both notches being geometrically identical, one can
see from the mode snapshots in Figs. 1(b) and 1(d) that both
the twisting and translational modes’ dynamics are largest at
the wide end of the TDW. This suggests that this end of the
TDW has a weaker lateral confinement than the narrow end
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FIG. 3. Deformed domain wall in a 75-nm strip for Hx =
5530 A/m.

of the TDW. This is confirmed in Fig. 3 which shows a TDW
being pushed away from the notches under the action of a
magnetic field, H , applied along the x axis (H < Hdepin, the
static depinning field). It is indeed the less strongly pinned
wide end of the TDW which is displaced furthest from the
notch. To see what effect notches at each end of the wall have
on the modes, we show in Figs. 2(c) and 2(d) results obtained
while varying dnotch on only one side of the strip (either at the
wide end or at the narrow end of the TDW) while keeping the
other notch’s intrusion depth fixed at 10 nm. We indeed find
that ftrans is most sensitive to changes of dnotch at the narrow
end of the wall, that notch being dominant in determining
ftrans (and in generating pinning). For example, reducing dnotch

from 10 to 2 nm at the narrow end of the wall [filled circles
in Fig. 2(c)] generates a very strong, 40% reduction in ftrans.
This reduction in ftrans is accompanied by a transition to a more
pure translation of the TDW structure in its entirety rather than
an excitation in which the highest amplitude dynamics occur
at the wide end of the TDW [as in Fig. 1(a)]. This change in
dynamics occurs because both ends of the wall now experience
a relatively weak pinning. If we change dnotch only at the wide
end of the wall, however, we observe much weaker changes
in ftrans [crossed open circles in Fig. 2(c)] with similar trends
seen for ftwist [Fig. 2(d)]. The dnotch dependence of fbreathe

again remains very weak [also see Fig. 2(d)].
To test the limits of the dnotch insensitivity of fbreathe,

simulations were run with the notch at the wide end of the
wall displaced away from x = 0 for the 75-nm-wide strip. This
did lead to small changes in fbreathe (dnotch = 10 nm, wnotch =
20 nm) with some distortion of the breathing mode observed
when the notch was right at the edge of the TDW. However,
the maximum frequency change still remained within 3% of
the value observed for two laterally centered notches. We also
looked at the percentage variation of fbreathe for two other strip
widths for centrally located notches (60- and 100-nm-wide
strips again with a 5 nm thickness). We found the lowest
sensitivity occurred for larger strip widths [Fig. 4(a)] where
the notch intrudes comparatively less far into the strip and thus
presumably generates a weaker change to the energy landscape
that is experienced by the TDW (confirmed in Sec. III C for the
translational mode). Reducing the thickness of the layer also
led to a further reduced sensitivity. This can be seen in Fig. 4(b)
where we again plot resonance data for 60- and 75-nm-wide
strips but this time with a reduced (2.5 nm) strip thickness. An
important point to note from Fig. 4 is that the breathing mode
remains highly insensitive to changes in the dnotch of small
notches for all studied strip widths. Indeed, we see the largest
changes in fbreathe when dnotch becomes larger than about 12 nm
suggesting that small defects should have only a minor effect
on the breathing mode. In contrast, the other two modes exhibit
the highest sensitivity to changes in the notch intrusion depth
when the depth is already small (Fig. 2).

We briefly note that changes in the width of the notch (for
a fixed notch depth of 10 nm) yielded only weak changes
for fbreathe and ftwist. Over a range of notch widths from 5
to 50 nm we observed �ftwist � 3% and �fbreathe � 2%. The
change in ftrans was also quite small when reducing the notch
width below 20 nm (�ftrans � 6%). However, broadening the
notch to 50 nm led to a strong reduction in ftrans of >60%,
presumably due to a strongly reduced confinement by the
broader notches (the effect of confinement on ftrans is discussed
further below).

B. Strip width dependence

When holding the notch geometry constant (wnotch = 20 nm
and dnotch = 10 nm), an increasing strip width generates a
reduction in each of the TDW mode frequencies [Fig. 5(a)].
The breathing and twisting modes remain highest in frequency
and their similar frequencies, coupled with slightly different
width dependencies, results in a mode crossing which occurs
at w = wc ≈ 88.4 nm for this 5-nm-thick strip [Fig. 5(b)]. At
w ≈ wc, a translational mode as well as two other distinct
TDW modes are found with the latter appearing as “hybrid”
twisting-breathing modes [e.g., Fig. 5(c)]. However, we note
that their hybrid nature is due to the arbitrary basis chosen
by the eigensolver: each hybrid mode can in fact be shown to
be a linear combination of the “pure” orthogonal twisting and
breathing eigenmodes (see Appendix A). Indeed, we expect
no coupling between different modes due to the exclusion
of damping and nonlinear terms in our approach [51]. The
hybrid nature of the modes remains clearly identifiable via
visual inspection for |w − wc| � 1.5 nm. However, as |w −
wc| increases, the computed modes become more pure (i.e.,
a dominant breathing or twisting characteristic). In Fig. 5(b),

FIG. 4. Percentage change in fbreathe with respect to fbreathe at
dnotch = 10 plotted against dnotch for (a) 5-nm-thick strips and (b)
2.5-nm-thick strips at various strip widths (see legends).
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all modes at w �= 88.4 nm are labeled either as twisting or
breathing with the label corresponding to the mode which is
dominant. Analogous hybrid modes were also calculated for
a similar geometry using the mode solver in the SPINFLOW3D

simulation package. Some details on this solver have been
given previously [52].

C. Width-dependent confinement and its effect
on the translational mode

We now turn specifically to the strip-width dependence
of the translational mode which will be shown to be linked
to the width dependence of the notch-induced confinement
of the TDW. Note that some qualitative models for the
higher frequency breathing and twisting mode frequencies as
a function of strip width are given in Appendix B.

The frequency of the translational mode of the pinned TDW,
ftrans, as a function of H < Hdepin is shown for a number
of strip widths in Fig. 6 (again we use wnotch = 20 nm and
dnotch = 10 nm). Note that for fields above the depinning field
(i.e., H > Hdepin), the system’s relaxed configuration is that of
a quasiuniformly magnetized strip with the TDW having been
displaced towards the end of the strip and annihilated during
the simulation’s relaxation stage [i.e., the moment where we
determine m0(r)]. As such, there is no TDW mode data above
Hdepin (since no TDW is present). For all strip widths, ftrans

shows a weak negative monotonic dependence on H for
small H/Hdepin. However, ftrans drops sharply to zero (i.e.,
again going towards the case of a free TDW) as H → Hdepin.
DW resonant frequency reductions near depinning have been
previously observed experimentally [13,47]. Note that for H ≈
Hdepin, ftrans exhibits a stronger sensitivity to the relaxation
parameters of the simulation, requiring the use of a smaller
dm/dt near Hdepin. ftrans as well as the determined value of

FIG. 5. (a) Frequencies of the three TDW eigenmodes as a
function of strip width, w. The notches are symmetric (dnotch = 10 nm,
wnotch = 20 nm). At w = 88.4 nm the calculated modes are hybrid
breathing-twisting modes [see inset, (b)]. (c) shows snapshots of the
amplitude of the dynamic component (red) of the hybrid modes found
for w = 88.2 nm at 6.091 GHz (upper, primarily a breathing mode)
and 6.099 GHz (lower, primarily a twisting mode).

Hdepin itself is also more sensitive to the nonuniform meshing
than the undeformed TDW at H = 0. For example, a slightly
higher Hdepin (<1% relative change) was found when using
lmesh = 3 nm throughout the structure at w = 60 nm revealing
some influence on the f versus H plot from the nonuniform
meshing. This influence is highest for the strongly deformed
walls near Hdepin where ftrans varies quickly with H .

As Hdepin is approached, ftwist also drops in frequency
[Fig. 6(b)] which may, in part, be due to the wide part of the
TDW being away from the upper notch (as per Fig. 3). This
shifts the wall-concentrated dynamics at the upper edge of the
strip away from the notch [Fig. 6(c)]. We have already seen that
strongly reducing the size of the upper notch for an undisplaced
wall reduces ftwist [Fig. 2(d)] and the case of the displaced wall
is somewhat analogous as the upper part of the wall is now
far from the notch (i.e., we effectively have dnotch → 0 at the
location of the upper end of the TDW). Unlike ftrans, ftwist

remains finite near depinning, analogous to the finite ftwist

observed for dnotch = 0 in Fig. 2(b). The breathing mode again
shows a very weak change in its frequency even near depinning
where the spatial profile of the mode is strongly deformed
[Fig. 6(d)] with respect to the case of a nondisplaced wall
[Fig. 1(c)]. Once again this highlights the robustness of fbreathe

(above to notch geometry and now to in-plane-field-induced
deformation).

In Fig. 6 an increased ftrans can be observed at small strip
widths [a trend which has already been seen in Fig. 5(a)]
and this is accompanied by an increased Hdepin. To under-
stand this, we will take the previously used approach of

FIG. 6. (a) ftrans versus in-plane field, H (oriented along +x), for
strip widths of 50, 60, 75, and 110 nm (dnotch = 10 nm and wnotch =
20 nm). (b) fbreathe and ftwist versus H at a strip width of 75 nm. (c),
(d) Snapshots of the amplitude of the dynamic component (red) of
the magnetization for the (c) twisting and (d) breathing modes at a
strip width of 75 nm for H = 5530 A/m (i.e., close to depinning).
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FIG. 7. (a) Equilibrium TDW position versus H applied along
the +x direction. Solid lines are linear fits to the low field data
(typically the first four to five points). (b) TDW spring constant versus
strip width calculated from the linear fits in (a) using Eq. (1). (c)
Thiele domain wall width of the H -deformed TDWs versus H . (d)
Calculated ftrans [calculated as per the text using the data in (a) and
(c) and Eqs. (1)–(3)] versus the simulated ftrans [Fig. 6(a)].

modeling a parabolic, notch-induced TDW confining potential
[12,22,31,69,70]. This results in a springlike behavior of the
DW with a restoring force of −kNx where kN is the pinned
TDW’s spring constant and x its displacement from the center
of the strip. The equilibrium position of the TDW at a given
H is determined by a balance between this restoring force and
the effective force due to the applied magnetic field [31,70].
This force can be estimated from the x derivative of the change
in Zeeman energy for the displaced TDW: 2μ0wtMSH where
t = 5 nm is the strip thickness and μ0 = 4π×10−7 H/m. Note
that we neglect the locally altered strip width at the notch.

To extract kN , in Fig. 7(a) we plot the equilibrium position
for the domain wall versus H for the data shown in Fig. 6.
The position of the field-deformed TDW (see, e.g., Fig. 3), x,
was determined from the spatially averaged x component of
the magnetization along the strip [31,70]. For low field, there
is good linearity between x and H , indicative of a close-to-
parabolic pinning potential. At larger fields, however, there is
a faster than linear growth in x, the effect of which will be
discussed further below. From the data in the linear region
(which has slope dx/dH = glinear), we can estimate a value
for kN :

kN = (2μ0wtMS)(x/H )−1 = (2μ0wtMS)g−1
linear (1)

which, plotted in Fig. 7(b) versus the strip width, reduces with
increasing strip width. At small widths, this results in a stiffer
domain wall (when the notch, which has a fixed size, makes a
larger relative intrusion into the strip).

We can now use the values of kN to estimate ftrans at H = 0
and compare to the data in Fig. 5 [31,70]:

ftrans = 1

2π

√
kN

mw

. (2)

Here, mw is the mass (e.g., [8,39,71]) of the TDW. Note
that an increased resonant frequency is observed for smaller
widths (Fig. 6) where kN is higher [Fig. 7(b)]. Thus we can
immediately see that our results are qualitatively consistent
with the trend suggested by Eq. (2), at least under the
assumption of a w-independent mass. To obtain numerical
values for ftrans, however, we must estimate the mass for which
we use the damping-free (α = 0) expression [31,70] (a similar
expression is given by Krüger [72]):

mw = 2μ0wt

γ 2(Nz − Ny)�
. (3)

γ = 2.210 713 × 105 m/A s and � = �T is the Thiele DW
width [73] [field dependent, as per Fig. 7(c)] which is defined
by 2/�T = 1/(wt)

∫
V

(dm/dx)2 where V is the nanostrip
volume. Ny and Nz are the demagnetizing factors for the TDW
in the y and z directions. To calculate these factors, we used
expressions given by Aharoni [74], treating the TDW as a
uniformly magnetized slab with a length in the y direction
equal to the strip width, a height in the z direction equal to the
strip thickness, and a width in the x direction of ρ�T (H = 0).
ρ, a scaling factor, is the only free parameter since the strip
width and strip thickness are fixed. It sets the width of the
rectangular prism used for the demagnetizing field calculation
as a fraction of the Thiele width.

As can be seen in Fig. 7(d), good agreement between the
eigenmode simulation at H = 0 and the spring model [Eq. (2)]
is found for the four studied thicknesses when using ρ = 1

3 .
This means that the slab used for the demagnetizing factor
calculation is ∼10 nm wide in the x direction, essentially
covering a central narrow slice of the TDW structure where the
magnetization is quasiuniformly magnetized in the y direction
[Fig. 8(a)] and thus close to our original model of a uniformly
magnetized slab. Note that the magnetization undergoes an
almost complete rotation from being aligned along +x to −x

over a much larger distance ∼π�T [Fig. 8(a)]. It is, however,
the central region of the TDW which appears to be the relevant
part in this approach.

The effective width of the pinning potential, Lpin, defined
here as the maximum displacement of the TDW measured
before depinning [Fig. 7(a)], increases with �T [read from
Fig. 7(c)] and thus with strip width. However, the depinning
field (the field at which the wall can escape from the pinning
potential) is smaller in the wider strips [Fig. 6(a)]. Thus,
although the pinning potential has a larger effective width
when the strip width is high [increasing by a factor of ∼1.4,
Fig. 7(c)], it appears to be the wide strips’ reduced kN [which
changes more strongly with width, reducing by a factor of
∼2, Fig. 7(b)] which is dominant in determining these strips’
reduced depinning fields.

Finally, we address the faster than linear growth in the TDW
position versus H [Fig. 7(a)] which is a result of the pinning
potential having a reduced steepness near its edge [47]. We can
show that Eq. (2) remains valid in describing ftrans at x �= 0
(i.e., even in the nonparabolic [13,47] part of the potential) if
we replace kN by a local effective spring constant

kN,eff[x(H )] = 2μ0wtMS

dx/dH
. (4)
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FIG. 8. (a) x dependence of the x and y components of the
magnetization taken at y = 0 (at the center of the strip). �T is the
Thiele DW width and ρ is a scaling factor used in the demagnetizing
field calculation. (b) Effective width of the pinning potential (Lpin)
estimated from the maximum displacement of the TDW before
depinning [taken from Fig. 7(a)] plotted against �T for strip widths
of 50, 60, 75, and 110 nm. The largest width strip has the largest �T .

In Fig. 9
√

(dx/dH )−1 [∝ftrans as per Eq. (2)] has been
plotted versus the simulated values of ftrans for all studied
strips. We have neglected any field-induced change in the
TDW mass [mw = mw(H = 0)] and have used a numerical

FIG. 9. Plot of (dx/dH )−1, proportional to the local effective
spring constant, versus ftrans for field-displaced TDWs in strip widths
of (a) 50, (b) 60, (c) 75, and (d) 110 nm. (dx/dH )−1 and ftrans data
were taken, respectively, from Figs. 7(a) and 6(a). Solid lines are
linear fits to the data assuming a zero x-axis intercept. The inset in
(d) shows the ratio of the slope of the data in (a)–(d) predicted from
the spring model to the measured slope.

derivative of the data in Fig. 7(a) to determine dx/dH . We
find a high degree of linearity over the full field range for all
strip widths. This confirms the continued validity of Eq. (2)
and demonstrates that the sharp drop-off in ftrans near Hdepin

[Fig. 6(a)] can be linked with a change in the local gradient
of the pinning potential at its edge, the latter determining
the resonant frequency of the displaced TDW in the small
oscillation limit. Note that from Eq. (2), we expect that the
slope of the data in Fig. 9 will be 2π

√
mw(H = 0)/2μ0wtMs .

We have plotted the ratio of the predicted slope to the fitted
slope in the inset of Fig. 9(d) where we indeed find consistency
to within 2.5%.

IV. CONCLUSION

We have numerically calculated eigenmodes of TDWs
which are pinned at triangular notches in in-plane magnetized
nanostrips. This enabled the study of translational, twisting,
and breathing resonances of TDWs and the effect that notch
geometry and field-induced TDW displacements have on
these modes.

The twisting and translational modes both involve either
local or global lateral translation of the wall structure within
the notch-induced pinning potential. This leads to a clear
sensitivity to changes in the intrusion depth of the notches,
especially to that of the notch at the narrow end of the TDW
structure which has a dominant role in laterally confining
the TDW. The breathing mode, which is characterized by
dynamics concentrated at the lateral edges of the TDW (and
thus away from the notches), was relatively insensitive to
changes in the notch intrusion depth and width. For example,
when varying the notch intrusion depth from 0 to 20 nm, the
largest change in the mode’s frequency was 3% (observed for
the narrowest studied strip width of 60 nm). Based on our
results, this sensitivity may be able to be further reduced by
using a thinner or wider strip.

Our results may be relevant when choosing which TDW
mode to exploit in DW oscillators or when aiming to
individually or simultaneously excite (multiple) DWs pinned
at different positions within a strip (e.g., in shift registers
[5,46,75]). This is because certain modes (i.e., those with a
translational nature) will be more sensitive to nonuniformity of
notch geometries and/or to the presence of small uncontrolled
defects. The results suggest that the breathing mode frequency
will be the most robust to the introduction of small unwanted
defects or nonuniformity in fabricated notch geometries,
especially at larger strip widths or smaller notch depths. In
contrast, having a translational or twisting mode frequency
which is robust to small changes in the notch geometry appears
to be reliant on having relatively large notches.

For a fixed notch geometry, the frequencies of all modes
increased with decreasing strip width, making this an impor-
tant device parameter to control. In the particular case of the
translational mode’s frequency, its width dependence could
be reproduced with a spring model for notch-induced TDW
confinement. Furthermore, the eigenmode method (which does
not rely on the forced driving of the TDW’s resonant dynamics)
allowed us to determine the translational mode frequencies
over a wide range of fields, including in the vicinity of the
static depinning field where the translational mode frequency
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dropped sharply towards zero as the TDW was displaced to
the edge of the confining potential. At low applied magnetic
fields (and thus low TDW displacements), the notch-induced
confining potential was parabolic, enabling us to analytically
reproduce the simulated translational mode frequency at zero
field. At large fields (which generated larger displacements
of the TDW within the confining potential), the growth of the
pinning potential’s energy with displacement was subparabolic
(as seen previously for a vortex DW [47]). Here the spring
model could still be used to reproduce the translational mode
frequencies as long as the local slope of the pinning potential
was used to calculate the spring constant. These calculations
required a DW mass determination with a good match between
quasianalytics and simulation achieved when using only the
very narrow central part of the TDW for the calculation of the
TDW’s demagnetizing factors (critical for the determination
of the TDW mass).

Finally, we note that ftrans is finite only in the presence
of confinement. In contrast, fbreathe and ftwist remain large
and finite even without a notch or close to the depinning
field, demonstrating an intrinsic f > 0 characteristic, albeit
with some (mode-dependent) sensitivity to the notches’
presence.
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APPENDIX A: EXTRACTION OF PURE MODES
FROM HYBRID MODES

To demonstrate that each hybrid mode [Fig. 5(c)] is
a linear combination of the pure orthogonal twisting and
breathing eigenmodes, we let v1,v2 be the hybrid mode
eigenvectors as returned by the solver (their complex entries
encode the amplitude and relative phase of the magnetization
oscillations at each mesh node). To show that these can
be reduced to the pure modes we need to find complex
scalars a1,a2 such that the linear combination v = a1v1 + a2v2

represents a breathing or twisting mode. The breathing mode
is characterized by being fully symmetric about the y axis,
i.e., the oscillations in the left and right halves of the
nanostrip are out of phase by 180◦: v(x,y,z) = −v(−x,y,z).
The expression

∫ |v(x,y,z) + v(−x,y,z)| thus measures the
deviation from symmetry for an eigenmode v and we can
find the “most symmetric” linear combination by minimizing
this with respect to a1,a2. Since each eigenvector is only
determined up to a scalar, we can assume that a1 = 1
(or a2 = 1), reducing the dimensionality of the optimization

FIG. 10. (a) ftwist versus the inverse strip width. (b) fbreathe versus√
Ny (see text for Ny calculation) for a number of strip widths. The

linear fits have been obtained by constraining the x-axis intercept to
zero.

problem. The obtained linear combination is confirmed to be
an eigenvector corresponding to a breathing mode. Similarly,
the twisting mode can be recovered by using the condition
vtwist(x,y,z) = vtwist(−x,y,z).

APPENDIX B: MODELING THE TWISTING AND
BREATHING MODES

We detail here two simple qualitative models for the fbreathe

andftwist strip width dependencies seen in Fig. 5(a).
The general trend of decreasing ftwist with w for fixed notch

geometry is qualitatively consistent with a stringlike mode that
is confined across the strip having a single node in the strip’s
center (i.e., with wavelength ∼2w and thus a frequency ∝ 1

w
).

We plot ftwist versus 1
w

in Fig. 10(a) with reasonable linearity
at larger widths.

Liu and Grütter have constructed a model for DW width
resonances in magnetic films [42] which predicts that fbreathe

will be proportional to
√

Keff where Keff is the effective
anisotropy energy associated with the domain wall. For our
static TDW (here in a confined geometry rather than a
continuous layer), Keff comes from the TDW’s demagnetizing
energy and can be written as 1

2μ0M
2
SNy (e.g., [76]), giving

fbreathe ∝ √
Ny . Indeed, this relation reproduces the observed

fbreathe trend relatively well over the entire strip width range,
as calculated for a number of strip width values in Fig. 10.
To determine Ny , we used the same slab approach as used in
Sec. III C.
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