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We present an experimental study of phase locking in a stochastic magnetic oscillator. The system
comprises a magnetic tunnel junction with a superparamagnetic free layer, whose magnetization
dynamics is driven with spin torques through an external periodic driving current. We show that
synchronization of this stochastic oscillator to the input current is possible for current densities below
3 × 106 A=cm2, and occurs for input frequencies lower than the natural mean frequency of the stochastic
oscillator. We show that such injection locking is robust and leads to a drastic reduction in the phase
diffusion of the stochastic oscillator, despite the presence of a frequency mismatch between the oscillator
and the excitation.
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I. INTRODUCTION

Spin-torque-driven magnetic tunnel junctions (MTJs)
exhibit a variety of dynamic behaviors, which, combined
with their tiny size, CMOS compatibility, and endurance,
make them promising candidates for a range of applications
[1]. In particular, they are ideal model systems for the study
of nonlinear dynamical phenomena. Under certain condi-
tions, spin torques can lead to self-sustained precession of
the magnetization and the junctions behave as nonlinear
auto-oscillators, which can phase lock to an external signal
[2–5], or even self-synchronize [6–8]. Phenomena related to
the latter are currently the focus of much research, as it
represents a promisingmeans of improving the quality factor
of such spin-torque nano-oscillators. However, the exper-
imental demonstration of self-synchronization has been
limited to a small number of spin-torque nano-oscillators
(N ≤ 4) [9,10].
Because of the small magnetic volume (or “active

region”) of such oscillators, the magnetization dynamics
of these nano-objects is very sensitive to thermal fluctua-
tions and other noise sources, resulting in a large phase noise
that is detrimental to efficient phase locking and synchro-
nization [11,12]. To make progress towards synchroniza-
tion, one line of enquiry has involved studying modes that
are less sensitive to noise, such as vortex gyration [13–15]
or excitations in coupled bilayers [16,17]. Here, we instead
pursue a different paradigm in which noise can be
advantageous for improving coherence and facilitating

synchronized states. This builds upon recent work in which
spin-torque-driven magnetic tunnel junctions have been
shown to exhibit stochastic resonance [18–21], i.e., a
noise-enhanced sensitivity to very weak external stimuli
[22]. Our work is focused on the stochastic oscillator, which
involves a bistable state in which thermal fluctuations drive
random transitions between the two states. Because such
transitions involve a mean transition rate, an average
frequency for the stochastic oscillator can be defined, and
the presence of thermal fluctuations means that switching
between the two states persists indefinitely without any
external forcing.
Theoretical studies have shown that synchronization of

such bistable stochastic oscillators is possible with an
external harmonic excitation and occurs at an optimal
noise level [23,24]. Experimentally, noise-enhanced syn-
chronization has been mostly investigated in the context of
biologic systems, thus requiring one to deal with extremely
noisy and sparse data [25–27]. Very few in-depth studies
deal with solid-state systems: these include Schmitt triggers
[28,29], and lasers [30], which are mostly seen as toy
systems to test the theoretical predictions. In this Letter, we
demonstrate experimentally the noise-enhanced synchro-
nization of a nanoscale physical system: the magnetic
tunnel junction. In phase with the trend towards ultimate
miniaturization, we exploit the increased impact of thermal
fluctuations at reduced dimensions to synchronize the
magnetic tunnel junction at very low energy cost and at
room temperature, thus opening the path to real-world
noise-leveraging applications.*julie.grollier@thalesgroup.com
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II. MAGNETIC TUNNEL JUNCTION AS A
STOCHASTIC OSCILLATOR

Our system is a superparamagnetic tunnel junction: at
zero or small bias, the free-layer magnetization constantly
fluctuates between the parallel (P) and antiparallel (AP)
states under thermal fluctuations. This system is particu-
larly interesting for two main reasons. First, the energy
barrier between the P and AP states is low, which allows
the magnetic configuration to be manipulated with spin
torques at very small current densities. Second, the junction
naturally behaves as a stochastic oscillator as described
above. We show using time-resolved experiments that,
despite its stochastic nature, phase synchronization of
the superparamagnetic tunnel junction can be achieved
by using low densities for the ac excitation current
(< 3 × 106 A=cm2) compared to those usually required
for spin-torque nano-oscillators [2–5]. By investigating the
phase-diffusion processes at stake we demonstrate the
existence of a critical frequency under which the noisy
system is able to lock to the excitation.
The stochastic oscillator is a magnetic tunnel junction with

an elliptical cross-section of 60 × 180 nm2, composed of a
reference synthetic-antiferromagnetic (SAF) trilayer of CoFe
(2.5 nm)/Ru (0.85 nm)/CoFeB (3 nm), anMgO tunnel barrier
(1.05 nm), and a CoFeTiB (2 nm) free layer [Fig. 1(a)]. The
free-layer magnetization is bistable, where the energy barrier
separating the two states is designed to be sufficiently low
such that thermally induced switching of the free-layer
magnetization from one state to the other occurs at room
temperature [Fig. 1(b)]. The MTJ is then said to be super-
paramagnetic (SP) and oscillates stochastically between the P
and AP states, generating a telegraph resistance signal due to
the large tunneling magnetoresistance (TMR) of the junction
[Fig. 1(c)]. Under constant bias, the dwell times in each state
follow aPoisson distribution [Fig. 1(d)] [31]. For instance,we
measure at low currents (Idc ¼ 100 μA) mean dwell times of
hτAPi ¼ 8.5 ms in the high-resistance AP state and hτPi ¼
10.1 ms in the low-resistance P state. In this “free-running”
regime, the junction behaves as a stochastic oscillator and
can be characterized by its mean frequency, defined by
hFi ¼ 1=ðhτPi þ hτAPiÞ, which corresponds to hFi ¼
53.8 Hz here. As illustrated in Fig. 1(b), depending on the
sign of the injected current, the spin torquewill favor one state
over the other, such that hτP;APi ¼ τ0 exp ½ΔEð1∓ I=ICÞ=
ðkBTÞ�, where τ0 is the attempt time, kB is the Boltzmann
constant, T is the temperature, ΔE is the energy barrier
between P and AP states at zero bias, and IC is the critical
switching current at zero temperature [31,32]. In our con-
vention, a positive current tends to stabilize the (AP)
magnetization state. In the following, all measurements are
performed at zero effective field, in other words with an
applied external field of−37 Oe compensating the stray field
from the SAF, so that both P and AP states show equal
stabilities at zero current. From the experimental value of the
zero-current dwell times (about 10 ms in each state), and

assuming an attempt time τ0 of 1 ns [31], we can derive that
the ratio of the energybarrier to the thermal energyΔE=ðkBTÞ
is close to 16, a small value in agreement with the super-
paramagnetic nature of our junction. Fitting the resistance
versus current curve in Fig. 1(e) with R¼RPþΔR=f1þ
exp ½2ΔE=ðkBTÞI=Ic�g allows us to derive the zero-
temperature critical current of our junction: IC ¼ 1.5 mA,
which corresponds to a critical current density of
1.8 × 107 A=cm2.

III. EXPERIMENTAL STUDY

A. Behavior under weak current excitation

We study the response of the SP MTJ to a weak
oscillating excitation current. Under the zero effective field,

FIG. 1. (a) Schematic of the magnetic tunnel junction stack.
(b) Schematic of double-well energy landscape for the free-layer
magnetization, that can hop between the P and AP states with the
assistance of thermal fluctuations and spin torque. (c) Sample of
the telegraphic temporal resistance evolution generated by the
MTJ, measured at room temperature under a Idc ¼ 100 μA
current and an applied field of −30 Oe which combined with
the stray field from the SAF favors the P state. (d) Associated
dwell-time distributions for P and AP states, fitted by an
exponential envelope corresponding to a Poissonian distribution.
(e) Resistance versus dc current curve obtained at zero effective
field, i.e., with an applied field of −37 Oe compensating the stray
field of the synthetic antiferromagnet.
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we inject a square-wave periodic current of different
amplitudes well below the critical current of our junction,
Iac ¼ 250, 200, 150, and 100 μA, and frequencies between
5 Hz and 2 kHz, and we monitor the voltage across the
junction with an oscilloscope. For each ac-current ampli-
tude Iac and frequency Fac considered, 10 traces of 2 s in
duration are recorded in order to obtain sufficient statistics
on the response of the stochastic device. By analyzing the
voltage data, we construct the time evolution of the free-
layer magnetization and examine how it is influenced by
the different parameters of the input ac current.
A first method to quantify the correlation between the

stochastic oscillator and the excitation source involves the
percentage of time during which the two signals are in
phase, which we denote as the “matching time.” Figure 2(a)
shows that this matching time increases monotonously as
the excitation frequency Fac decreases. This feature is
characteristic of stochastic resonance [22] and has already
been observed in other studies [18–20]. When the driving
frequency is large compared to the natural oscillation rate
of the stochastic oscillator, the latter does not respond
to the input signal, and the matching time is small. By
lowering the input frequency, the ability of the oscillator to
adjust to the external forcing increases, and the matching
time also increases accordingly. As Fig. 2(a) shows, the
matching time also increases with increasing amplitude
of the ac current, reaching values of 96.8% at 5 Hz and
Iac ¼ 250 μA.
However, the matching time does not provide any

information regarding the influence that the excitation

current has on the frequency of the stochastic oscillator.
To investigate this point, we also examined the evolution of
the mean oscillation frequency hFi as a function of the
frequency of the excitation current Fac [Fig. 2(b)]. When
the frequency of the input signal is too large for the
magnetization to follow, the mean frequency of the sto-
chastic oscillator plateaus to a constant value that is
determined by the amplitude of the ac current. When the
excitation frequency is reduced, on the other hand, we
observe a clear pulling of the mean frequency of the
stochastic oscillator toward the excitation frequency.
This pulling effect becomes more efficient as the amplitude
of the excitation increases. However, as Fig. 2(b) shows, the
mean frequency of the stochastic oscillator deviates from
the frequency of the input signal (dashed line) at low
frequencies at which the matching time percentage
increases.

B. Stochastic resonance and synchronization

In order to get a better insight into this effect, we examine
the time traces of the SP MTJ response for different
frequencies of the excitation current. The square-wave
current of amplitude Iac ¼ 250 μA and the temporal resis-
tance evolution of the MTJ are shown in Figs. 3(a) and 3(b),
respectively. We also reconstruct the piecewise linear
phases [24] associated with both the current (φe)
and magnetization (φs) oscillations [Fig. 3(c)] and extracted
the dwell-time distributions for both P and AP states
[Fig. 3(d)].
Let us first consider the case of a high excitation

frequency Fac ¼ 450 Hz compared to the natural frequency
hFi of the oscillator (Fig. 3, left column). As the resistance
time trace shows, the magnetization switching is largely
correlated with the reversals of the current polarity
[Figs. 3(a) and 3(b)]. A direct consequence is that the
dwell times no longer follow a Poisson distribution, as
observed when a constant current is applied, but rather
exhibit peaks around ðnþ 1=2ÞTac, where Tac is the period
of the excitation [Fig. 3(c)]. Such correlations can be
explained as follows. A dwell time close to Tac=2 means
that two consecutive ac-current polarity reversals both
induce a magnetization reversal. If the system does not
follow a polarity reversal, it has to wait for one more period
for the next reversal (τ ≈ 3Tac=2), or two more periods
(τ ≈ 5Tac=2), and so on. Nevertheless, the stochastic nature
of the switching still manifests itself in the Poisson-like
decay in the amplitude of the peaks in the dwell-time
distribution as τ increases. While the MTJ responds
resonantly under the influence of the excitation, due to
the phenomenon of stochastic resonance, synchronization
to the external signal is not achieved. The mean oscillation
frequency of the stochastic oscillator hFi ¼ 282 Hz
[Fig. 2(b)] remains significantly lower than the excitation
frequency Fac and the matching time between the two
signals is low at 17.4% [Fig. 2(a)]. This can also be seen in

FIG. 2. MTJ response to different current amplitudes
Iac ¼ 250, 200, 150, and 100 μA. (a) Matching time between
the resistance response and the excitation signal. (b) Average
oscillation frequency of the resistance response hFi versus
excitation frequency Fac. The dashed line corresponds to a match
between response and excitation frequencies.
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the piecewise linear phase evolution, where the phase of the
stochastic oscillator increases more slowly than the phase
of the input square wave, with no visible correlation
between the two [Fig. 3(c)].
As the excitation frequency is reduced to Fac ¼ 100 Hz,

the response of the system changes and the stochastic
nature of the oscillator becomes less apparent (Fig. 3, center
column). As the resistance time traces show, the magneti-
zation switches with each reversal of the current polarity
and the dwell-time distributions exhibit only one peak
around Tac=2. In addition, we note almost no occurrence
during the 20-sec measurement of a dwell time superior to
Tac, which would indicate one missed oscillation or phase
slip. Furthermore, the reconstructed phase of the stochastic
oscillator exhibits a quasilinear variation and follows
closely the phase of the input signal. As such, the stochastic
behavior is considerably reduced and is observed only as
small, bounded fluctuations of the piecewise linear phase
shift Δφ around zero. A near-perfect phase synchronization
is therefore achieved during this time interval for low
current densities, since 250 μA in our junctions corre-
sponds to a density below 3 × 106 A=cm2. The mean
frequency of the stochastic oscillator is measured to be
hFi ¼ 111 Hz [Fig. 2(b)] and the matching percentage has
increased to 70.0% [Fig. 2(a)].
As the excitation frequency is further reduced to

Fac ¼ 7.8 Hz, we observe the appearance of a large
number of “glitches” in the magnetization switching
(Fig. 3, right column). Since the current remains in each
polarity for a long time compared to the natural dwell
times, the probability of thermally driven back-and-forth
switching of the magnetization increases, which gives rise
to the observed glitches. These events occur over a short
time scale compared to the period of the input square-wave

current and appear as localized 2π jumps in the phase of the
stochastic oscillator. Outside of these glitches, the mag-
netization is seen to switch with each reversal of the current
polarity, which results in a quasilinear variation of the
stochastic oscillator phase. While the matching percentage
reaches a very high value of 95.9%, the presence of the
glitches leads to an increase in the mean frequency of the
stochastic oscillator oscillation, hFi ¼ 20.1 Hz, which is
significantly larger than the excitation frequency.

C. Phase diffusion

The broad features of the variation of the dwell-time
distribution with the frequency of the input forcing signal
described above are consistent with previous theoretical
and experimental work on periodically forced bistable
systems. However, while phase locking of stochastic
oscillators has been studied previously, the existence of
glitches in the synchronized state and their role in fre-
quency mismatches have not been considered theoretically
to the best of our knowledge [23,24]. In fact, these glitches
and the associated phase jumps are very similar in nature to
the thermally induced phase slips that can be observed
when noisy oscillators are phase locked. Quantifying this
phenomenon is therefore crucial for applications. To do so,
we analyze the phase evolution of the stochastic magnetic
oscillator as a one-dimensional random walk. Using the
measured time traces, we can derive the diffusion constant
for the phase [23,24],

Deff ¼
1

2

d
dt

½hφs;i
2ðtÞii − hφs;iðtÞi2i �; ð1Þ

which quantifies the randomness of the evolution of
magnetization oscillations, and Deff ¼ 0 would correspond

FIG. 3. SP MTJ response to square-wave current excitations with 250 μA amplitude and frequencies Fac ¼ 450 Hz (left), Fac ¼
100 Hz (center), Fac ¼ 7.8 Hz (right). Sample of the temporal evolution of (a) the current through the MTJ, (b) its resistance response,
and (c) the piecewise linear reconstructed phase for the current (φe, black) and for the resistance (φs, red). (d) Associated dwell-time
distributions for both high (AP) and low (P) resistance states.
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to a deterministic (e.g., perfectly harmonic) behavior of the
oscillator. Here, the index i ∈ ½1;…; 10� corresponds to the
measurement number. The evolution of the diffusion
coefficient versus excitation frequency at constant current
amplitude is shown in Fig. 4(a) for Iac ¼ 250 μA. We note
a drastic transition from the random to the synchronized
regime starting at a critical frequency FC ≈ 300 Hz, which
is very close to the natural frequency of the stochastic
oscillator for this input current amplitude [320 Hz, as
shown in Fig. 2(b)]. The system indeed switches from a
high excitation frequency regime where the diffusion
constant is large, corresponding to the free-running sto-
chastic oscillator, to a regime at low excitation frequencies
where the oscillator is entrained by the ac-current input
signal. This result shows that despite the glitches and the
difference between the average oscillation rate and the
excitation frequency, the stochastic oscillator falls into a
synchronized regime in which it is phase locked to the
excitation. To illustrate the difference in the dispersion
below and above the critical frequency, we present in
Figs. 4(b) and 4(c) the 10 φsðtÞ measurements for Fac ¼
210 Hz and Fac ¼ 700 Hz, respectively, on the same scale.
We can clearly see that for Fac > FC the dispersion
between oscillators is very high, while the dispersion is
strongly suppressed by external excitation for Fac < FC.
The nonvanishing Deff in the synchronized regime repre-
sents the remaining stochastic behavior associated with the
random occurrence of glitches and thermal fluctuations.

IV. CONCLUSION

In conclusion, we demonstrate that a stochastic magnetic
oscillator can phase lock to an input signal with a frequency
lower than the natural frequency of the oscillator. While the
synchronization is not perfect due to unavoidable phase
slips, it occurs for forcing current densities of the order of
3 × 106 A=cm2, one order of magnitude below the critical
values required for deterministic switching at zero temper-
ature. We therefore leverage an effect that appears only at
nanoscale dimensions: superparamagnetism, and exploit
the effect of thermal fluctuations for synchronization
instead of suffering from this noise. Given that nanoscale
magnetic tunnel junctions, building blocks of magnetic
memories, are a CMOS-compatible, mature technology,
our demonstration of their stochastic synchronization
finally opens the path towards noise-leveraging applica-
tions. In particular, this system is extremely promising
for applications where low energy is crucial, such as
bioinspired associative memories based on coupled
spin-torque nano-oscillator networks [33].
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