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Abstract—Since memristor came out in 2008, neuromorphic
designers investigated the possibility of using memristors as
plastic synapses due to their intrinsic properties of plasticity and
weight storage. In this paper we will present a silicon neuron
compatible with memristive synapses in order to build analog
neural network. This neuron mainly includes current conveyor
(CCII) for driving memristor as excitatory or inhibitory synapses
and spike generator whose waveform is dedicated to synaptic
plasticity algorithm based on Spike Timing Dependent Plasticity
(STDP). This silicon neuron has been fabricated, characterized
and finally connected with a ferroelectric memristor to validate
the synaptic weight updating principle.

I. INTRODUCTION

In 1971 L. Chua predicted the existence of memristor [1],
but it is only since 2008 and the response of the HP team [2]
to the theorist, that memristive components have renewed
interest. So far, this element has the capability to change
resistance according to the current flowing through it and
to memorize the modification. This intrinsic property can be
used for different applications: memory [3], logic [4] and
neuromorphic systems.

In the field of neuromorphic engineering, analog or mixed
mode hardware implementations have been proposed [5]
to build bio-inspired systems. Analog implementation takes
advantage from the locally analog and parallel nature of the
computations. Those systems are based on spiking silicon
neurons in real time [6]. The designers use biological prin-
ciples, taking various approximations of nature, with the view
to build more efficient systems. However, the spiking neural
networks (SNN) need to store the synaptic weights which will
be changed during the learning period.

Therefore, memristors constitute an ideal and very timely
alternative implementation for synapses of hardware SNNs.
Memristors combine the advantages of having a nano-size
to build larger SNN, being a non-volatile memory to reduce
power consumption and having an intrinsic plasticity to update
synaptic weight. Hardware SNNs with an architecture com-
posed of analog circuitry coupled with the aforementioned
memristors open the possibility to build high-performance
accelerators able to tackle the large computational tasks.
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Fig. 1. Silicon neuron dedicated to excitatory or inhibitory memristive
synapses.

In MHANN project, we focus on “ferroelectric memris-
tor” [7]. The advantage of this technology is a purely electronic
switching promissing large speed and high reliability. As
shown in [8], with memristors it is possible to have access to
different resistance values. Moreover their resistances are high
(between 1MΩ and 1GΩ) and their voltage thresholds are
around |2V |. This component has the required characteristics
to be used with CMOS technologies.

In SNN, plasticity of synapse is mandatory for learning
mechanism. The spike-timing dependent plasticity (STDP) is
commonly used. STDP depends on relative timing of pre- and
post-synaptic spikes. To use a memristor as a synapse we have
to translate this relative timing into voltage difference. In [9],
we have proposed a solution to gather memristive synapses
and spiking neurons. The purpose of this paper is to present
measurements which will validate our concept. The design of
such silicon neuron is presented in Sec. II. Measurements of
some building test blocks are detailed in Sec. III. In Sec. IV,
we connect one ferroelectric memristor to our chip to validate
the synaptic weight update.

II. CIRCUIT

Our silicon neuron is composed of a leaky integrate and fire
neuron (LIF neuron) and a second generation current conveyor
(CCII) as shown in Fig. 1. This arrangement permits us to
insert a memristive component before the neuron.

A. LIF Neuron and Spike generator

As it is proposed in [10] or in [11], LIF neuron is separated
in two blocks. The membrane block includes in parallel one
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1.6MΩ resistance for leaky effect, one 700fF membrane
capacitance to sum inputs contributions imem and one switch
to reset the capacitor. When the membrane voltage reaches
threshold potential Vth, comparator triggers the spike generator
block: an action potential is also output.

Theoretical studies in [10], point out importance of spike
shape for learning mechanism of memristive spiking neural
networks. Indeed it is the spikes that make the translation
of voltage-time. The shape of the spike directly influences
the resulting STDP. We chose to work with STDP that gives
potentiation of synaptic weight for ∆t > 0, and a depreciation
for ∆t < 0, with ∆t = tpost − tpre, where tpost being trigger
time of post-synaptic spike and tpre being trigger time of pre-
synaptic spike.

We chose spike form as illustrated in Fig. 2. It is generated
by the second block of LIF neuron called spike generator.
It is based on the Axon-Hillock circuit [12], which allows
us to control timing and amplitudes parameters tspk, tLTx,
Aoffsetmax

and Aoffsetmin
. During tspk pulse, a transmission

gate switches the output to Aspk constant voltage adjustable
outside the chip contrary to other spike settings.

time (s)

amplitude (V )

Aspk

Aoffsetmax

Aoffsetmin

tspk tLTx

Fig. 2. Shape of the spike.

B. CCII

The current conveyor provides impedance matching be-
tween synapse and neuron. The voltage at X (one memristor
terminal) follows that applied to Y (post-synaptic voltage).
The current supplied to X (synaptic current) is convoyed
to the output terminal Z (LIF neuron input) where it is
supplied with either positive polarity (excitatory synapse) or
negative polarity (inhibitory synapse). On the other words, the
memristor voltage is Vpre−Vpost. Then the memristor current
isyn is always injected into CCII and imem is equal to +isyn or
−isyn following the excitatory (using an CCII+) or inhibitory
(using an CCII-) type of the synapse respectively.

The CCII design is inspired from the description given
in [13] and has been adapted to input voltage range (0.85V to
4V ) and bandwidth required for minimum 100ns pulse width
transmission.

C. Fabrication

We have designed a chip called SpANNWiTA (Spiking
Analog Neural Network Winner Take All) using 6ML 0.18µm
CMOS technology from Austriamicrosystems under Cadence
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Fig. 3. Microphotography of SpANNWiTA.

Analog Design Environment using Spectre simulator. The die
shown in Fig. 3 has an area of 3 × 3mm2 and 142 pads ; it
has been packaged using PGA 144. The chip includes the two
layers of a neural network (81 x 10, all to all connected using
external crossbar of memristors), and several test blocks for
characterization. All the measurements that are presented in
the next section have been done using these blocks.
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Fig. 4. Photography of the measurement board.
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Fig. 5. Measurement of the spike generator output.

III. CIRCUIT MEASUREMENTS

A. Measurement environment

We have designed a specific board as shown in Fig. 4
dedicated to chip characterization and future network man-
agement. For routing convenience, the chip SpANNWiTA is
plugged on the bottom side. This board provides a 5V power
supply with the mid point at 2.5V and different biasing current
sources, 10µA for each neuron and 30µA for each current
conveyor. To perform the following measurements we use
Agilent Mixed Signal Oscilloscope, Waveform Generator and
Keithley Picoammeter.
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(a) Voltage follower test in DC mode: copy of VY on VX .
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(b) Current follower test in DC mode: copy of IX on IZ .

Fig. 6. Static CCII+ characterization in terms of voltage (a) and current (b).
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(a) Voltage copy of an action potential applied at Y CCII+ input to X input.
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(b) IZ CCII+ output current when an action potential is applied at Vpre with
a resistor of 1MΩ at X simulating a memristor.

Fig. 7. Dynamic CCII+ characterization in terms of voltage and current.

B. Spike generator characterization

For testing the pulse generator we set the voltage Aspk

to 3.75V . The measure pulse shown in Fig. 5 as the same
waveform than one of Fig. 2. Aoffsetmax

and Aoffsetmin

are equal to the wished voltage value that is important for
plasticity rules [10]. However tspk lasts three times more than
expected. As described in [8], the memristor plasticity depends
on the applied voltage and the application time. Thanks to
Aspk wich is a tunable parameter, we will overtake that
drawback.

C. CCII characterization

We have started by testing the DC behavior of the current
conveyor. We got the same results for both CCII+ and CCII-.
In Fig. 6(a), the VX voltage follows the slow voltage ramp
applied to Y input within a range of 0V to 4V . For CCII+,
the output current IZ follows the input current IX generated
by a ramp voltage applied on Vpre input and through 1kΩ
resistor at memristor location of Fig. 1.

For characterizing the dynamic behavior, a waveform gener-
ator applies a spike waveform on Y input that is copied on X
input with a little delay, as shown in Fig. 7(a). In another test
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Fig. 8. Memristor & CCII measurement platform.

illustrated in Fig. 7(b), we have fixed the VY input voltage to
2.5V and the output current IZ is the copy of the IX current
generated by a spike waveform applied on Vpre input through
a 1MΩ resistor.

IV. MEMRISTIVE SYNAPSE

Due to high resistance value of memristor, currents through
this component are weak. The unique solution for measure-
ment is to use a picoammeter. Using SMA cable, we have
connected a ferroelectric BFO memristor [14] to CCII input.
The measurement platform is shown in Fig. 8. The bias tee
connected to memristor avoids memristor value change due to
artefacts. The second bias tee rejected AC current that allows
DC accurate measurements with the picoammeter. Potential
VDCX

, VDCY
and VDCZ

are set to 2.5V . Two waveform
generators are used to deliver Vpre and Vpost neuron spikes
with a controlled delay ∆t. Finally, during the reading phase,
we adjust VDCX

to 2.7V , thus 0.2V potential difference
is applied to the memristor. Then we measure CCII output
current IZ , image of the memristor value, with a picoammeter.

Before applying the first difference of spike, we measure
a current iZ equal to 0.20µA. We can deduce Rmemristor ≈
1MΩ. Then a spike is generated at Vpost and 200ns after,
an other spike is generated at Vpre. We read iZ = 0.03µA
so Rmemristor ≈ 6.66MΩ. Memristor resistance value has
increased as expected (∆t = tpost − tpre < 0, synaptic
weight decreases and memristor resistance increases). After,
two pairs of spike are generated with ∆t = 100ns, we measure
iZ = 0.09µA (Rmemristor ≈ 2.22MΩ) then iZ = 0.19µA
(Rmemristor ≈ 1.05MΩ). As previously, the memristor resis-
tance has changed. But this time ∆t was positive, so synaptic
weight had to increase, that means resistance had to decrease,
as we observed.

The memristor resistance is modified with potential spike
difference. So the current conveyor is working as predicted in
simulation [9].

V. CONCLUSION

In this paper, we have characterized the building blocks of
our silicon neuron dedicated to the design of memristive spik-
ing neural networks. The measurements validate our design.

Then by connecting real BFO memristor with CCII we have
demonstrated it is possible to modify memristor resistance ie
synaptic weight, in real time thanks to spike delay. We proved
our concept is efficient for the design of memristive neural
networks.

The next step will be to connect the silicon neurons shown
Fig. 3 with a crossbar of memristors.
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