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We investigate the vortex excitations induced by a spin-polarized current in a magnetic nanopillar by means
of micromagnetic simulations and analytical calculations. Damped motion, stationary vortex rotation and the
switching of the vortex core are successively observed for increasing values of the current. We demonstrate
that even for small amplitude of the vortex motion, the analytical description based on the classical Thiele
approach can yield quantitatively and qualitatively unsound results. We show that the energy dissipation
function, which is calculated respecting rotational motion of the vortex, can be used for qualitative analytical
description of the system.
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A magnetic vortex is a curling magnetization distribution,
with the magnetization pointing perpendicular to the plane
within the nanometer size vortex core. This unique magnetic
object has attracted much attention recently because of the
fundamental interest to specific properties of such a nano-
scale spin structure. Gyrotropic modes of vortices in mag-
netic nanocylinders have been intensively studied theo-
retically1 and experimentally.2 Apart from their fundamental
relevance, the unique properties of the vortices are of con-
siderable practical interest for applications in magnetic
memory and microwave technologies. In this view, the
switching of the vortex core by magnetic field and spin-
polarized current has been thoroughly studied.3–6 More re-
cently, sub-GHz dynamics of magnetic vortices induced by
the spin-transfer effect observed in nanopillars and
nanocontacts7–9 have raised a strong interest. Indeed, the as-
sociated microwave emissions in such vortex-based spin-
transfer nano-oscillators �STNOs� occur at low current den-
sities, without external magnetic field, together with high
powers and narrow linewidths ��1 MHz� comparatively to
single-domain STNOs.

Traditionally, the analytical description of the vortex gy-
rotropic motion is based on the general approach for a trans-
lational motion of a magnetic soliton in an infinite media
developed by Thiele.10 This calculation consists in a convo-
lution of the Landau-Lifshitz-Gilbert �LLG� equation with
the magnetization distribution under a specific condition of a
translational motion of the magnetization pattern. Eventually
a single equation �often referred to as the Thiele equation�
for the vortex core position X can be derived. The approach
developed by Thiele to build his equation has been used for
a long time to derive equations of vortex motion in many
magnetic systems. In particular, it is often used to describe
analytically the vortex oscillations induced by spin
current11–14 in magnetic nanodisks, in the “current perpen-
dicular to the plane” �CPP� or “current in the plane” �CIP�
configurations. Vortex dynamics in magnetic submicron
disks cannot be considered as translational due to a strong
deformation of the vortex structure by the edges.15 Guslienko
et al. demonstrated that this deformation should be taken into
account in the calculation of the system energy.1 However

we show here that the impact of the spatial confinement on
the vortex dynamics is much deeper. Our results demonstrate
that, even if a proper model magnetization distribution is
used, the Thiele approach applied for CPP nanodisks with a
spin current can give rise to significant qualitative and quan-
titative errors. We suggest to use a different analytical tech-
nique to estimate the spin current-induced effects in such
systems.

In our calculations we consider vortex motion in a vortex
STNO. The system under study is sketched in the inset of
Fig. 1. The nanopillar spin valve has a circular cross section.
The reference layer is a fixed perpendicular polarizer, the
polarization vector p is perpendicular to the plane, and, to be
clear in our interpretations, we disregard the stray magnetic
field emitted by it. The initial magnetization distribution in
the free layer is a vortex; the magnetization within the vortex
core is parallel to p. The current flow is assumed to be uni-
form in the pillar, with an axial symmetry of the current lines
in the contact pads. The spin-transfer term16 in the calcula-
tions is given by ��J /Ms�M� �M�p�, J is the current den-
sity, M is the magnetization vector, Ms is the magnetization
of saturation and � represents the efficiency of the spin-
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FIG. 1. �Color online� Steady vortex gyration induced by the
spin-polarized current: frequency f =� /2� �squares� and radius of
the vortex core orbit a �triangles� as a function of the current den-
sity J �numerical simulations�. Top insets: illustrations for the time
evolution of the averaged projection of the free layer magnetization
on the polar axis, for J�JC1 �left�, JC1�J�JC2 �center� and
J�JC2 �right�, in arbitrary units. Bottom inset: sketch of the device
geometry.
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transfer torque: �=�P / �2�e�LMs�, P is the spin polarization
of the current, e is the charge of the electron, L is the sample
thickness.

As a starting point for our analytical calculations, we use
a shortened form of the Thiele equation as in Ref. 1 to ac-
count for the frequency of low-amplitude vortex oscillations
in magnetic nanodisks,

G �
dX

dt
−

�W�X�
�X

= 0. �1�

Here the gyrovector G is given by

G = −
Ms

	
� dV sin 
��
 � ��� , �2�

where 	 is the gyromagnetic ratio, 
 ,� are the magnetization
angles. The integration in Eq. �2� is over the magnetic disk.
W�X� is the potential energy of the shifted vortex. Guslienko
et al.1 showed that an appropriate model magnetization dis-
tribution for a moving vortex is given by the two-vortices
ansatz �TVA�,

���,;a,v� = ga��, − v� + v,

ga��,� = tan−1� � sin 

� cos  − a
� + tan−1� � sin 

� cos  − R2/a� + C .

�3�

Here � , are polar coordinates in the disk plane, a= �X� is the
vortex core displacement, �a ,v� is the position of the vortex
core center, R is the radius of the dot and C=� /2 or
C=−� /2 for different regions of the dot. The TVA �Eq. �3��
defines a spin structure that satisfies the magnetostatic
boundary conditions, i.e., assumes zero magnetic charges on
the side borders of the disk. The out-of-plane magnetization
component Ms cos 
 can be described by a bell-shaped func-
tion, that is nonzero in the core region a few nanometers in
diameter.17 Using Eq. �1�, hereafter we address analytically
the vortex gyrotropic motion with a frequency � and a small
orbit radius a,

Ẋ = �ez � X, a � R . �4�

It follows from Eq. �2� that the gyrovector is given by
G=−Gez, where G=2�MsL /	 is the gyroconstant.1 At small
current densities, the major contribution to the vortex energy
W�X� is the magnetostatic energy Wm, arising from the ap-
pearance of volume magnetic charges for a shifted vortex. It
is given by Wm�a�= 20

9 �Ms
2L2a2 /R.1 Recent simulations have

shown that the contribution of the Oersted magnetic field
generated by the current can be very important.18 Therefore
we also calculate the energy contribution WOe due to the
Oersted field. WOe is given by integration of the energy den-
sity −HOe�r� ·M�r ,X� over the volume, where HOe�r� is the
Oersted field distribution at a given point r. The integration
yields WOe�a�=1.70�LRMsJa2 /c.19 Summing up these two
contributions and using Eqs. �1� and �4�, one gets the ana-
lytical prediction for the vortex frequency,

� = �0
m + �OeJ , �5�

where �0
m= 20

9 	MsL /R and �Oe=1.70	R /c, c is the speed of
light.

At the next step we calculate the energy dissipation func-

tion Ẇ=	� �E
�
 
̇+ �E

�� �̇�dV,11 which will give us the critical cur-
rent to excite the vortex oscillations. Taking �E

�
 and �E
�� from

the LLG equation, one finds

Ẇ = −
Ms

	
� dV���
̇2 + sin2 
�̇2� − 	�J sin2 
�̇� , �6�

� is the Gilbert damping. The term proportional to � repre-
sents the natural damping; the second term is due to the spin
torque, it can be positive or negative according to the current

sign. For a steady motion, the energy is conserved �Ẇ=0�;
thus after some algebra, one can find from Eqs. �4� and �6�,

2��� = 	�J , �7�

where �= 1
2 ln�R /2le�+ 3

8 , the exchange length is le

=
A /2�Ms
2, A is the exchange stiffness. From Eqs. �5� and

�7� we get an expression for the critical value JC1 of the
current density to excite the vortex oscillations,

JC1 =
���0

m

	�/2 − ���Oe
. �8�

A different prediction follows from the Thiele approach.
The Thiele equation that takes into account the damping and
the spin-transfer effect in the CPP configuration is given
by11,12

G �
dX

dt
−

�W

�X
− D̂

dX

dt
+ FST = 0, �9�

where the spin-transfer force FST is

FST = MsL� ��J� � � sin2 
dV �10�

�a different expression for FST has been derived for CIP

systems13�. D̂ is the damping tensor,

D̂ = −
�Ms

	
� dV��
 � 
 + sin2 
 � � � �� . �11�

For circular dots, D̂=DÊ, where Ê is a unit tensor and the
damping constant is D=���G.20 The factor �� and the pre-
viously introduced � define the same quantity even if they
are given by different expressions, as we discuss below. Cal-
culation of the spin-transfer force by Eq. �10� for the TVA
yields FST=2�MsL�Jae.11,12 For a steady gyrotropic mo-
tion, the third and the last terms of Eq. �9� are perpendicular
to the first and the second terms. Therefore the frequency of
the vortex motion, given by Eq. �1�, is not affected by the
supplementary terms of Eq. �9�; instead, they define the am-
plitude of the vortex motion.11

For the steady motion, the damping term is balanced by
FST; thus one gets
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���� = 	�J . �12�

Comparing this to Eq. �7�, we see that Eq. �12� yields about
a twice smaller value of the first critical current JC1.

The reason of this difference is related to the breakdown
of the assumption of a translational motion for the vortex,
thus of the basic underlying assumption for the Thiele ap-

proach. Indeed, the derivation of the terms G, FST, and D̂
�Eqs. �2�, �10�, and �11�� essentially uses the following fea-
ture of the translational motion of a magnetic soliton:

Ṁ=−�Ẋ ,��M.11 However, one finds from the TVA and the
micromagnetic simulations, that the magnetic moments at
the disk side border are aligned along the border line; these
moments stay still when the vortex is moving. Thus the left-
hand side of this expression vanishes for the regions close to
the disk boundary. However the right-hand side has a finite
value in these regions due to nonvanishing �M. FST is very
sensitive to this discrepancy: integration over inner regions
of the disk in Eq. �10� shows that about a half of the magni-
tude of FST originates from the boundary regions of the disk.
That is in contrast to the gyrovector G, which magnitude
comes from the vicinity of the vortex core, where the dis-
crepancy is negligible; to some extent, the same conclusion

holds for the damping term D̂ at a�R.
Recently, a generalization of the Thiele approach has been

developed.21 For a constrained vortex it allows deriving a
generalized Thiele equation that has the same structure as
Eq. �9�. By treating Eq. �9� in this sense and comparing it to
our results,22 we find that the proper expression for the spin-
transfer force and for the damping constant for our system
are correspondingly FST=�MsL�Jae and D=��G.

We now compare our analytical results to numerical
micromagnetic simulations. In the simulations a nanopillar
300 nm in diameter is considered. The free layer is 10 nm
thick and has the following magnetic parameters:
Ms=800 emu /cm3, A=1.3�10−6 erg /cm, and �=0.01
�values for NiFe�. We use a two-dimensional mesh with in-
plane cell size 1.5�1.5 nm2. The polarization is taken to be
P=0.2. The micromagnetic simulations are performed by nu-
merical integration of the LLG equation using our micro-
magnetic code based on the forth order Runge-Kutta method
with an adaptive time-step control for the time integration.

We observe vortex excitations only for positive current,
which is defined as a flow of electrons from the free layer to
the polarizer. The vortex motion is damped for small current
densities J�JC1, where the first critical current density JC1
=4.9�106 A /cm2. For larger currents, after some transi-
tional period, the vortex is gyrating on a steady circular orbit.
Interestingly, JC1 is about one order of magnitude less than
the critical current density for excitation of magnetization
oscillations in nanopillar STNOs with nominally uniform
free magnetic layer.23,24 The values of J for which the steady
vortex oscillations are observed, are limited by the second
critical current value JC2=9.0�106 A /cm2. For J�JC2, on
reaching a critical orbit, the core of the vortex is reversed.
The details of this process: appearance of a vortex with op-
posite polarity and an antivortex, annihilation of the latter
with the original vortex, essentially reproduce the previous
findings for the vortex core switching by the field or

current.4,5,12 After the reversal of the core, the direction of
the vortex gyration is changed and the vortex oscillations are
damped.

For each point within JC1�J�JC2, the vortex motion is
simulated for 100 ns after reaching a stationary orbit. The
vortex frequencies extracted from these simulations together
with the radius of the oscillation orbit are presented in
Fig. 1. On increasing J, the oscillation frequency increases
ranging from 0.34 to 0.41 GHz. The radius of the orbit
increases with the current as well, reaching 125 nm at
J=8.5�106 A /cm2.

Analytical prediction for the vortex frequency at J=JC1,
given by Eq. �5�, is f =0.36 GHz that is in a good correspon-
dence to the simulation results f =0.34 GHz. This agreement
�similar to that found in Ref. 1� owes to the fact that the
gyrovector G and the energy derivative �W /�X are not sen-
sitive to the violation of the assumption of the translational
motion. The factor � for our system can be extracted using
additional simulations. We find that if the current is switched
off, the vortex motion is a gyration with the orbit damped in
time as a�exp�−t /��, � is a time constant. On the other hand,
it follows from Eqs. �4� and �6� that at zero current
a�exp�−���t�. Comparing this to the numerical results, we
find �=��=1.65 �Ref. 25� �in good agreement with the ana-
lytical prediction �=1.71�.

Taking � and f from the simulations, we find from Eq. �7�
that the analytical prediction JC1=4.5�106 A /cm2 is in
good agreement with the numerical result. The result of the
Thiele approach �Eq. �12�� is JC1=2.3�106 A /cm2, that il-
lustrates our statement of its imperfection to account for the
vortex motion in CPP nanopillars.

We demonstrate the deficiency of the Thiele approach in a
different way. We perform simulations for a configuration
that we call constrained polarizer for which the current po-
larization P equals 0.2 for ��50 nm and P=0, hence,
�=0 for larger �. Thus for this structure the current does not
excite the regions close to the disk border, in contrast to the
case of the uniform polarizer. The resulted dependences f�J�
and a�J� are presented in Fig. 2. We find for this configura-
tion that JC1= �4.9�0.1��106 A /cm2 equals the critical
current for a uniform polarizer. This is in perfect agreement
with the analytical result obtained by considering the dissi-
pation. Indeed, Eq. �6� gives equal results, hence equal val-
ues of JC1, for both configurations at a�R.

The prediction of the Thiele approach for a constrained
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FIG. 2. �Color online� Numerical result for the constrained po-
larizer, in the notations of Fig. 1. Inset: sketch of the device
geometry.
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polarizer is that the magnitude of the spin-transfer force FST
�Eq. �10�� is a factor 1.8 less than that for a uniform polar-
izer. Accordingly, the value of JC1 in the two configurations
differs at about the same factor, in contradiction to the nu-
merical results. Thus we demonstrate that the Thiele ap-
proach can give rise to not only quantitative, but also quali-
tative disagreements.

Dependencies of the vortex frequency and orbit on the
current for JC1�J�JC2 can also be treated analytically by
taking into account higher-order terms in W�a� and Ẇ�a�.
This study goes beyond the scope of this Rapid Communi-
cation and its results will be presented elsewhere. However
we note that the most important among the higher-order
terms is that of the damping parameter �, which appears to
be a strong function of the vortex displacement. Another im-
portant nonlinear contribution owes to the magnetostatic
energy.11 These facts appear to be sufficient to get a qualita-
tive understanding of f�J� and a�J� functions presented in
Figs. 1 and 2.

Simulation results for the constrained polarizer contain
other remarkable facts. We see that the second critical cur-
rent JC2=6.5�107 A /cm2 is by a factor of about 7 larger
that JC2 for a uniform polarizer. The oscillation orbit gradu-
ally increases with the current reaching a=108 nm at
J=JC2. The oscillation frequency starts at f =0.34 GHz at
JC1 like for a uniform polarizer but reaches a larger
frequency f =0.52 GHz at J=JC2.

It has been predicted that the vortex core is reversed if its
velocity reaches a critical value vcrit that is about 340 m/s for
permalloy independently of the device design.6 Our simula-

tion results are 320 m/s for the uniform polarizer and 350
m/s for the constrained polarizer in nice agreement with this
prediction. A small difference between the values is presum-
ably due to a different extent of the vortex deformation at
critical orbits. The value of vcrit together with the dependen-
cies of f�J� and a�J� define the value of the second critical
current JC2. As for the constrained polarizer f�J� and a�J� are
much less steep functions than those for the uniform polar-
izer, JC2 in the former is substantially larger than in the latter.
Larger frequencies at a given orbit, found for the constrained
polarizer, are related to the strong influence of the Oersted
field. These facts make this configuration promising for ap-
plications. It can be implemented by reducing the polarizer
dimensions or simply by using a point-contact technique.

In conclusion, we demonstrate that the Thiele approach
can fail to give a proper analytical description for the vortex
motion in the CPP magnetic nanopillars due to the imperfec-
tion of the underlying assumption of the translational motion
of the vortex. Instead, the analytical approach, which is
based on the calculation of the energy dissipation and re-
spects the rotational vortex motion, has shown to be in good
agreement with the numerical results. Our calculations dem-
onstrate that vortex-based STNOs can potentially have very
low values of JC1, large values of JC2 and operate at zero
external magnetic field. This makes them promising candi-
dates for future microwave technology applications.
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