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We have simulated the nonlinear dynamics of networks of spin-transfer oscillators. The oscillators are
magnetically uncoupled but electrically connected in series. We use a modified Landau-Lifschitz-Gilbert equa-
tion to describe the motion of each oscillator in the presence of the oscillations of all the others. We show that
the oscillators of the network can be locked not only in frequency but also in phase. The coupling is due to the
microwave components of the current induced in each oscillator by the oscillations in all the other oscillators.
Our results show how the emitted microwave power of spin-transfer oscillators can be considerably enhanced
by current-induced synchronization in an electrically connected network. We also discuss the possible appli-
cation of our synchronization mechanism to the interpretation of the surprisingly narrow microwave spectrum
in some experiments on a single isolated spin-transfer oscillator.
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The spin-transfer phenomenon, predicted by Slonczewski1

in 1996, is now the subject of extensive experimental2–9 and
theoretical studies.10–15 It has first been shown that a spin-
polarized current injected into a thin ferromagnetic layer can
switch its magnetization. This occurs for current densities of
the order of 107 A cm−2 and the switching can be extremely
fast ��200 ps�.16 More recently, it has been experimentally
demonstrated that, under certain conditions of applied field
and current density, a spin-polarized dc current induces a
steady precession of the magnetization at GHz frequen-
cies.17–19 These steady precession effects can be obtained in
F1 /NM /F2 standard trilayers in which a thick magnetic layer
F1 with a fixed magnetization is used to prepare the spin-
polarized current that is injected in a free thin magnetic layer
F2. The giant magnetoresistance effect20 �GMR� of the mag-
netic trilayer converts the magnetic precession into micro-
wave electrical signals. We will refer to these nonlinear os-
cillators as “spin transfer oscillators” �STO�. They emit at
frequencies which depend on field and dc current, and can
present very narrow frequency linewidths.21 As a conse-
quence, they are promising candidates for applications in
telecommunications, where the need for efficient, integrated,
and frequency agile oscillators is growing. The main draw-
back of the spin-transfer oscillator is its very weak output
microwave power that can be optimistically estimated at
−40 dBm for a single oscillator. A solution to overcome this
difficulty is to synchronize several oscillators, i.e., to force
them to emit at a common frequency and in phase in spite of
the intrinsic dispersion of their individual frequencies. This
is essential for applications and this would open the way to
microwave devices exploiting the fast and flexible frequency
tuning of the STO by adjustment of a dc current and their
unique potential for on-chip integration. On the other hand,
the synchronization of STO raises complex problems which
are new in spintronics and related to the general field of the
dynamics of nonlinear systems.

Synchronization has been extensively studied since the

1980s, not only because of its many potential applications �in
physics, biology, and chemistry� but also because under-
standing the behavior of a large collection of nonlinear dy-
namic systems is a theoretical challenge.22,23 In solid state
physics, a well-known example of synchronization is given
by a network of Josephson junctions. An alternating potential
takes place across a single superconductor/insulator/
superconductor junction if a dc current exceeding a critical
current is injected through it. For an array of such junctions,
electrically connected in series or in parallel, each junction
emits a microwave current that adds to the injected dc cur-
rent. When the resulting interaction exceeds a critical level, it
tends to synchronize the oscillation of the junctions.24–26 The
theoretical prediction27 is that for N oscillators, not only the
emitted power increases as N2, but the frequency linewidth
decreases as N−2. There is a definite similarity between net-
works of Josephson junctions and of STO, in spite of the
different equations ruling these two systems. Recent experi-
ments have shown that STO can phase lock �synchronize� to
an external microwave current source.28 Slavin et al. have
analytically studied this case for weakly nonlinear spin-
transfer oscillators.29 Even more recently, it has been shown
experimentally that two STO can be synchronized and phase
locked.30,31 In these experiments the synchronization is sup-
posed to be due to the coupling between the two magnetic
oscillations generated in the same ferromagnetic layer by the
two STO. As we will show below, it exists another way that
should lead to an efficient and convenient synchronization of
a large number of STO. This is by the ac current components
generated by a collection of STO electrically connected
in series. Nanowires composed of several hundreds of
NiFe/Cu/NiFe trilayers �in series with a separation between
trilayers by much thicker Cu layers� have been already fab-
ricated by electrodeposition into holes and have been used to
obtain large CPP-GMR effects.32 Such nanowires, for which
the GMR ratio can reach 30% �Ref. 32� should be ideal to
implement a system of electrically coupled STO.
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In this paper, we develop numerical simulations to study
the synchronization of electrically connected STO. More
specifically, for spin-transfer oscillators electrically con-
nected in series like the trilayers in the nanowires of Ref. 32,
we introduce the coupling due to the microwave current in-
duced in each oscillator by the oscillations of all the others.
We show that, under certain conditions for the dispersion of
the frequencies, the GMR amplitude and the delay between
the magnetic precession and the current oscillation, synchro-
nization can be obtained with an output power increasing as
N2 for a collection of N oscillators.

We first consider N oscillators of standard structure for
spin transfer F1�fixed� /NM /F2�free� connected in series and
coupled to a dc current generator and to a resistive load RC,
as shown in Fig. 1�a�. Our notation is displayed in Fig. 1�b�.
We call RPi and RAPi the resistances of the oscillator i in,
respectively, its parallel and antiparallel magnetic configura-
tions. We define R0i= �RAPi+RPi� /2, �Ri= �RAPi−RPi� /2, �R

=RC / �RC+�i=1
N R0i�, and ��Ri=�Ri / �RC+�i=1

N R0i�. For the
dependence of the resistance Ri of the oscillator i on the
angle between the magnetizations of F1 and F2 at time t,
�i�t�, we assume the following standard equation:

Ri = R0i − �Ri cos��i�t�� . �1�

The angle �i�t� depends on the initial value of �i at t=0
and on the variation of the current between 0 and t.

In first order of ���Ri and with the notations of Fig. 1�a�,
a straightforward calculation leads to

I = I1 + �
i=1

N

I1��Ri cos��i�t�� , �2�

with I1=�RI0. Similar expressions can be found for oscilla-
tors connected in parallel, with different expressions for J
and ��Ri.

In order to study the behavior of N electrically coupled
oscillators, we have performed simulations of the motion of
the magnetizations mj of the layers F2 of a collection of
different oscillators connected in series. Each m j is consid-
ered as a macrospin without any dipolar interaction with the
other mi. Its time evolution is given by a Landau-Lifschitz-
Gilbert �LLG� equation which includes a standard spin-
transfer term proportional to the current. According to Eq.
�2�, the current is the sum of the dc current I1 plus the cou-

pling term �I1��Ri cos��i�t�� and the motion equation of m̂j

can be written as

dm̂j

dt
= − �0m̂j � H� ef f + �m̂j �

dm̂j

dt

+ �0J�1 + �
i=1

N

��Ri cos��i�t��m̂j � �m̂j � M̂�� ,

�3�

where we have introduced the spin-transfer parameter J pro-
portional to I and expressed it in field units. In a typical
Co/Cu/Co device,17 a current density of 107 A/cm2 corre-
sponds to about 10−2 Tesla. M is the fixed magnetization of
all the F1 layers. The effective magnetic field Hef f, is com-
posed of an uniaxial anisotropy field Han, an applied mag-
netic field Happ, and the demagnetizing field Hd. All fields are
in-plane �parallel to the direction of the fixed magnetization
of F1� except for the out-of-plane demagnetizing field. In the
following, if not mentioned otherwise, we will consider the
case of 10 oscillators with Happ=0.2 T, Hd=1.7 T, and a
Gilbert damping term �=0.007 �values for Co�.

Simulations of the dynamics are performed using a
fourth-order Runge-Kutta algorithm, with a calculation step
of 0.5 ps. We have chosen the following random initial con-
ditions: for each oscillator, the initial angles between the two
magnetizations were randomly picked between 0° and 10°
for the polar angle �i and between 0° and 360° for the azi-
muthal angle 	i. We have checked that, under these condi-
tions, the variation of the initial conditions does not hinder
synchronization. In order to introduce a dispersion in the
behavior of the oscillators, differences can be introduced in
the anisotropy fields Han, demagnetizing fields Hd or GMR
ratios. We have checked that all these different types of dis-
persion give similar results. In this paper, we will focus on
the first case, with the following dispersion: Han=0.05+ �i
−1��0.01 in Tesla, i varying between 1 and 10. Finally, in a
real experimental setup, there may be a delay 
 between the
spin-transfer induced resistances variations and the resulting
variation of the current. 
 is zero for a perfect match between
RC and the impedance of the cables between the STO and
RC, or can be different from zero in other experimental situ-
ations. We first present simulation results obtained with a
fixed value of 
 �
=5 ps, which corresponds to the limit
where 
 is much shorter than the precession period� and we
will come back briefly on the general influence of 
 at the
end of this paper.

We will first consider that all the oscillators have the same
resistance R and magnetoresistance �R, so that we can write
the coupling term in Eq. �2� as JAGMR /N� cos��i�t�� with
AGMR=�R / �R+RC /N�. In this particular case, for large N,
AGMR is close to the value of the GMR ratio.

In Fig. 2, we show the emitted power by the set of 10
oscillators as a function of the frequency for different cou-
pling parameters AGMR. For this set, with 0.05 T�Han
�0.14 T, the dispersion of the individual frequencies is
2.7%, of the order of the dispersion �1.25%� in recent
experiments.30 The emitted power at a given frequency is
derived by Fast Fourier Transforming the electrical power

FIG. 1. �Color online� �a� Sketch of N oscillators connected in
series and coupled to a load RC �throughout the paper, RC=50 ��.
�b� Variation of the resistance versus the angle �i between the mag-
netizations of F1 and F2 for an oscillator and corresponding
notations.
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released in RC. As the functions �i�t� are known only for a
finite number of times t, an oscillation at a well-defined fre-
quency appears in the Fourier transform as a peak of finite
width. The injected dc current J is 0.035 T, and the delay

=5 ps. When AGMR=0, each oscillator oscillates at its own
frequency: the frequencies are distributed between 25.8 and
26.5 GHz approximately, and the total emitted power is that
emitted by the sum of independent oscillators. For AGMR
=0.03 and 0.05, all the oscillations result in a single peak. In
these two cases, as expected, there is an increase by a factor
of about 100 in the integrated emitted power with respect to
the case without coupling. This scaling with approximately
N2 indicates that the N oscillators are locked not only in
frequency but also in phase, as it will be discussed in more
detail below. In Fig. 2, we can also notice a general upward
shift of the frequency as the coupling increases.

In Fig. 3, we consider the evolution with time of the tra-
jectories of 100 oscillators. The bias conditions �J=0.035 T,

=5 ps� are similar to the previous case with Han picked
randomly between 0.05 and 0.1 T for each oscillator �see
scale in Fig. 3�, and AGMR=0.03. The black curve corre-
sponds to the two symmetrical final trajectories. By looking
at the position of the oscillators at different times, we see
they are turning in phase �small bounded phase shift�, with
the fastest oscillator opening the way.

Experimentally, varying the coupling parameter AGMR
means changing the GMR ratio in a controllable way, which
might be difficult. Another way to increase the coupling is to
increase J which, from Eq. �3�, enhances both the mean

torque and the coupling between i and j. The variation of the
frequency of oscillator 1 �Han=0.05 T� with J in the absence
of coupling �AGMR=0� is shown in Fig. 4. Similar results
have been obtained in simulations by other groups.17 For J
smaller than 0.016 T, the frequency decreases as J increases
in the regime of in-plane precessional trajectories of the
magnetization. It increases for J larger than 0.016 T corre-
sponding to the regime of out-of-plane orbits. In Fig. 5, we
have plotted the difference in frequency, f , between the
tenth oscillator and the first as a function of J for different
coupling parameters AGMR; f =0 means synchronization of
the two oscillators. The reference curve �no synchronization�
obtained for AGMR=0 is plotted in Fig. 5�a�.

We first consider the curve of Fig. 5�b� corresponding to
AGMR=0.03 with a delay 
 of 5 ps. For low values of J, the
coupling is small, and the oscillators do not synchronize. The
system is nevertheless disturbed by the injection of the mi-
crowave currents, as can be seen from the differences be-
tween f for AGMR=0.03 and AGMR=0. Synchronization is

FIG. 2. �Color online� Logarithm of the power versus frequency
for the set of 10 oscillators described in the text and for different
coupling factors AGMR. J=0.035 and 
=5 ps.

FIG. 3. �Color online� Motion of 100 oscillators on their trajec-
tory at t=12, 18, and 30 ns: the phase of the oscillators is locked.

FIG. 4. �Color online� Frequency versus injected dc current J
for oscillator 1 and AGMR=0 �no coupling�. The insets show the
trajectories of the magnetization m̂ �Mx ,My ,Mz� in the two regimes
referred to in the text. In the absence of current, the equilibrium
along Hef f corresponds to Mx=1, My =Mz=0.

FIG. 5. �Color online� Difference in frequency between oscilla-
tor 1 �Han=0.05 T� and oscillator 10 �Han=0.14 T� as a function of
the dc current. Three cases are considered. �a� AGMR=0, �b� AGMR

=0.03 and 
=5 ps, �c� AGMR=0.4 and 
=0.3 ns. The black arrows
indicate synchronization �f10− f1=0�.
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reached �f =0, see arrows in Fig. 5�b�� above J=0.035 T
�this is in the out-of-plane regime with, as shown in Fig.
5�a�, weaker dispersion, and probably, easier synchroniza-
tion�. Figure 5�c� corresponds to a situation with enhanced
coupling �larger AGMR�. In this case, synchronization extends
to the in-plane precession regime �see arrow at J=0.01 T�.

We finally come back on the influence of the delay 

between the variation of the STO resistances and the result-
ing variation of the current. The results presented above are
representative of the short delay limit, that is with 
 much
smaller than the precession period. Out of this limit, for a
given set of STO and a given current, the proportion of syn-
chronized STO depends on 
 and decreases markedly when 

exceeds the precession period by about two orders of mag-
nitude. In the intermediate range, our results also suggest that
this proportion varies periodically as a function of 
 with a
period close to the precession period. This periodic behavior
of synchronization versus delay, with a period corresponding
to the oscillation frequency, has been already predicted in
other systems.33,34 This influence of the delay 
 will be dis-
cussed in more detail in a further publication.

In conclusion, we have shown that it is possible to syn-
chronize a network of spin-transfer oscillators by simply
connecting them electrically in series to a load �similar ef-
fects can be expected for oscillators in parallel�. The syn-
chronization depends on the dispersion of the individual fre-
quencies, on the coupling parameters and the delay time 
.
Under certain conditions, the synchronization can be com-
plete. In this case, the output power of N oscillators turns out

to scale with N2. We have also shown that, for synchronized
oscillators, the frequency as well as the emitted power are
strongly dependent on the coupling factor AGMR, related to
the GMR ratio. These results are of interest for obtaining an
enhanced microwave generation with networks of spin-
transfer oscillators. They also show that magnetic devices
can be synchronized in the same way �from the coupling
mechanism point of view� as in the model system repre-
sented by a network of Josephson junctions, but with two
degrees of freedom �polar and azimuthal angles� instead of
one �phase�. As we have shown in the introduction, such
series of STO could be implemented in the type of nanowires
which have been developed for CPP-GMR experiments and
systems of hundreds of STO could be achieved in this way.

We finally point out that the synchronization mechanism
by microwave current components we have discussed for
networks could also be important in the interpretation of the
properties of a single spin-transfer oscillator �pillars or point
contacts�. The microwave spectrum of some isolated oscilla-
tors is surprisingly narrow, in contrast with the inhomoge-
neous broadening predicted by simulations based on micro-
magnetic models of ferromagnetic dots.35 However, from our
results, introducing the coupling between different parts of
the dot due to the microwave component of the total current
could synchronize these different parts. Such synchroniza-
tion effects could thus explain less chaotic oscillations than
predicted and account for the narrow linewidth of the micro-
wave spectra.
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