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Parametric excitation of magnetic vortex gyrations in spin-torque nano-oscillators
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1Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 avenue Fresnel, 91767 Palaiseau, France
2CNES, 18 av. Edouard Belin, 31400 Toulouse, France

3Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Universitá di Napoli Federico II, Via Claudio 21, Napoli, Italy
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We experimentally demonstrate that large amplitude magnetic vortex gyrations can be parametrically excited
by the injection of radio-frequency (rf) current at twice the natural frequency of the gyrotropic vortex-core
motion. The mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial
field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as
the manifestation of parametric amplification when the rf current is small, and of parametric instability when the
rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe
the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.
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I. INTRODUCTION

Parametric excitations and parametric resonance are long-
known phenomena in classical physics.1 They occur in systems
with periodically varying parameters and may result in large
excitations by appropriately tuning the frequency of parametric
changes with the natural frequency of the system.2 The most
common example of a parametrically excited system is a
person on a swing, the dynamics of which can be analyzed
as a pendulum with varying length.3 The swing dynamics is
archetypal to parametric phenomena present in many systems
of interest in mechanical, civil, and naval engineering.4 In
addition, the possibility to use parametric phenomena to
improve the sensitivity of microelectromechanical systems
(MEMS) is recently under intense investigation.5,6

In the area of electrical and telecommunication engineering,
parametric amplification was actively studied before the advent
of the transistor, as a technique to obtain low-noise amplifiers,7

and it is recently receiving renewed interest.8 The principle of
operation of the parametric amplifier can be clearly illustrated
in reference to LC-based electronic oscillators. The time-
varying parameter is usually the junction capacitance of a
reverse biased diode and the capacitance is controlled by
the voltage across the junction. The parametric pumping is
obtained by increasing the capacitance when the capacitor is
charged and decreasing it when the capacitor is discharged. A
net gain is obtained when the frequency f of the parametric
variations satisfies the conditions f ≈ 2f0/n, where f0 is the
natural frequency of the oscillator of the system and n a positive
integer.

In applied magnetism, the parametric excitations of magne-
tization oscillations have been extensively studied in the area
of ferromagnetic resonance9 in connection with the processes
of spin-wave instability10 and parallel pumping.11 These
phenomena are driven by the modulation of the oscillation
frequency of elementary excitations (spin waves) associated
with the spatially uniform magnetic ground state obtained by
a strong bias field. In the case of spin-wave instability, the
spatially uniform mode is driven to a large precession angle

by radio-frequency (rf) fields applied transversal to the bias
field. The modulation of the spin-wave spectrum is due to the
nonlinear coupling of the uniform precession with spin waves.
On the other hand, in the case of parallel pumping, the rf field
is applied along the direction of the bias field, and thus directly
modulates the frequency of spin-wave modes.11

In this paper, we investigate the implementation of the
principle of parallel pumping in spin-torque devices having
a vortex in the free magnetic layer both experimentally
and theoretically. It is an unconventional case of parallel
pumping because the field used to modulate the frequency
of magnetization oscillations is the orthoradial magnetic field
generated by the injected current (usually referred to as the
Oersted field). The frequency of this modulation is chosen to
be twice the frequency of the lowest frequency mode present
in a magnetic thin disk with a vortex ground state, which is the
translational motion of the vortex core.12

The present investigation is relevant to the development
and control of spintronics rf oscillators in large excitation
regimes.13 These oscillators promise to have an important role
in forthcoming microwave communication technologies.14,15

A striking result in this area has been the development of
spin-torque nano-oscillators (STNOs), tunable over a wide fre-
quency range by the injected current both for uniform16–18 and
nonuniform19–21 magnetic configurations. The performances
of these devices in terms of power and linewidth have been
constantly improved over the past few years.22–28 In particular,
it has been recently demonstrated29–31 that magnetic tunnel
junction (MTJ) pillars with a vortex ground state32–34 allow
one to obtain a signal with a large output power (�1 μW)
and very good coherence (�1 MHz). It is crucial to gain an
understanding of the dynamics of these oscillators in regimes
where the vortex is driven very far from the equilibrium
position, as is the case in the present study.

Parametric resonance by means of parallel pumping in a
spin-valve nanopillar has been previously studied by Urazhdin
et al.35 in the more traditional setting where the magnetic
free layer is uniformly magnetized and the pumping rf field,
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generated by an antenna, is applied along the spatially uniform
bias field. In addition, the somehow related phenomenon of
phase locking of spin-torque auto-oscillations by an external
source at double frequency has been investigated both in the
case of a uniformly magnetized free layer,35 and in the case of
a vortex state free layer.36,37

Here, we study parametric excitations of a vortex MTJ
subject to an external rf current with a frequency close
to 2f0, where f0 is the gyrotropic resonance frequency of
the vortex core with a dc current below the threshold for
self-oscillations (subcritical case). The use of the dc current
in our experiments is aimed to obtain a partial compensation
of dissipative damping effects by means of the spin-torque
effect. In order to have sufficient efficiency in the damping
compensation, a large enough out-of-plane component of the
magnetization in the polarizing layer is required, and this is
realized by applying a strong out-of-plane static field. This
field leads to an out-of-plane component of the vortex curling
in the free layer which is, for this reason, in the vortex core
state.12 The lowest frequency magnetization dynamic mode in
the free layer is the gyrotropic motion of the vortex core,
which is mainly determined by a confining potential due
to magnetostatic and current produced fields. The parallel
pumping is realized by modulating the gyrotropic frequency
of the vortex through the rf variations of the Oersted field.
The resulting gyrotropic motion exhibits two specific features
of parametric resonance of weakly dissipative oscillators. The
first effect, usually referred to as parametric amplification (see,
e.g., Rugar et al.5), consists in the amplification of signals
which contain the frequencies close to the natural oscillation
frequency of the vortex. In our case, it manifests itself in the
amplification of the thermally activated vortex motion around
its equilibrium position. The second effect is the parametric
instability that takes place when the power of the rf excitation
exceeds a certain threshold at which both the amplitude and
the coherence of the oscillations strongly increase. Eventually
saturation is reached due to nonlinearities. An interesting
feature of the steady state reached after the instability is the
coexistence of the large parametrically excited regime with the
static equilibrium point (thermally excited vortex resonance).
This coexistence, and the related hysteresis phenomena, are
predicted by the theory in the absence of thermal fluctuations.
In the experiments at room temperature, this feature manifests
itself in the thermal hopping of the system between the two
stable regimes and it is detected by the presence of doubly
peaked power spectra.

In the following, we will first present the experimental
results of parametric excitation. Then we will show how we can
describe the evolution of the magnetization with our analytical
model, and finally we will compare the analytical and the
experimental results.

II. EXPERIMENTS

A. Methods

We perform our measurements on several circular MTJs of
radius R = 250 nm. The complete structure (with thickness
in nm) is PtMn (15)/CoFe (2.5)/Ru (0.85)/CoFeB (3)/MgO
(1.075)/NiFe (5)/Ta (7)/Ru (6)/Cr (5)/Au (200). The 5-nm-
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FIG. 1. (Color online) Scheme of the circuit used in the experi-
ments.

thick NiFe free layer presents a vortex magnetization at
remanence. The resistance-area (RA) product is �8.8 �μm2.
The MTJ resistance at the saturated parallel state is RP � 45 �

with an average magnetoresistance �R � 8.5 � at room
temperature. The measurement circuit is described in Fig. 1.
The sample is subjected to a magnetic field, which can be
applied at any angle compared to the plane of the sample. Both
a dc and an rf current are applied perpendicular to the plane of
the sample [current-perpendicular-to-plane (CPP) geometry].
A spectrum analyzer and a nanovoltmeter are connected in
parallel in order to control both the rf and dc components of
the output signal. The dc and rf parts of the circuit are separated
through a bias tee. Two dc blocks prevent extra dc current to
reach the rf instruments and an attenuator is added to minimize
the noise in the measurement. A typical measurement consists
of the following steps: (i) Apply the external field Hext.
(ii) Apply the dc current Idc. (iii) Apply the rf current Irf

at a frequency sufficiently far from the frequency of interest,
i.e., frf � 2f0 or frf � 2f0. (iv) Sweep the frequency of the
rf current frf in the desired frequency range.

For all of the presented measurements, the field is applied
out of plane with an amplitude of Hext,z = 4.48 kG. In our
convention, a positive current means electrons flowing from
the free layer to the SyntheticAntiFerromagnet (SAF) stack.
We emphasize that the injected dc current Idc is always below
the threshold Ith necessary to excite large amplitude vortex-
core sustained oscillations, which, depending on the sample,
can vary between 4 < Ith < 5 mA. Consequently, when no Irf

current is applied, the small Idc induces only small fluctuations
of the vortex core around its equilibrium position and a very
weak signal is measured at f0 � 140 MHz with a maximum
fitted power of about 3 nW/GHz/mA2 and a large linewidth
(about 12 MHz). These figures are typical of thermal-induced
vortex-core oscillations.29,38,39

B. Results

The main features of the microwave signal are modified
when an additional current Irf is injected at a frequency close
to 2f0. In Fig. 2(a), we first present the color-scale map of the
power spectral density (PSD) as a function of the frequency
of the current Irf = 0.8 mA (rms value) corresponding to an
rf power of −18 dBm. A signal emerges from the background
level when 264 < frf < 278 MHz, which corresponds to a fre-
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FIG. 2. (Color online) (a)–(c) Colored maps of emitted power
for the frequency of the gyrotropic core motion vs the external rf
frequency measured (a) for a small Irf = 0.8 mA (corresponding to a
power of −18 dBm) and (c) a large Irf = 1.6 mA (corresponding to
−12 dBm) current (rms value). Idc = 3 mA and Hperp = 4.48 kG.
Both currents and field are applied perpendicular to the sample
plane. (b)–(d) Power spectral density vs frequency measured with
an external rf current at frf = 275 MHz.

quency around twice the natural frequency f0 of the system. As
shown in Fig. 2(b), the spectrum measured for frf = 275 MHz
can be fitted by a Lorentzian distribution. A maximum fitted
power of 5 nW/GHz/mA2, twice as large as the thermal
one, is observed. The corresponding linewidth is also reduced
by one order of magnitude to 2.1 MHz compared to the
case with Irf = 0 mA. These measurements are a clear
example of parametric amplification of the vortex dynamics in
the regime of subcritical Idc currents and are consistent with
the ones presented by Urazhdin et al.35 for the case of uniform
magnetization under a parametric rf field.

The situation changes drastically when Irf > 1 mA. We
enter into a new regime, i.e., the parametric instability regime,
and a tremendous improvement in both the coherence and
the emitted power is obtained. A striking example of such
behavior is displayed in Fig. 2(c) for a large value of rf
current, i.e., Irf = 1.6 mA, corresponding to an rf power of
−12 dBm. We find a large window of frf , i.e., between 265
and 285 MHz, in which the emitted power associated with
the vortex dynamics comes out from the background level
and the spectral linewidth reduces significantly. In this range,
the vortex frequency increases linearly with frf and is strictly
equal to frf/2. To demonstrate the drastic improvement of
the rf features in this specific regime, we plot in Fig. 2(d)
the peak detected for frf = 275 MHz. The maximum fitted
power reaches 15 μW/GHz/mA2 that is more than three
orders of magnitude larger than the case of low rf power.
The measured linewidth �f of 49 kHz is indeed limited by
the resolution bandwidth (RBW) of the spectrum analyzer
(see the circuit scheme in Fig. 1) needed for measuring a
large range of frequencies. Additional measurements with an
optimized RBW allow us to extract a bottom limit value for
the linewidth equal to 9 kHz.

III. VORTEX DYNAMICS: ANALYTICAL MODEL

It is assumed that the magnetization distribution in the disk-
shaped free layer of the MTJ under investigation is determined
by the position X of the vortex core both in static and
dynamic conditions. A magnetization dynamics equation can
be accordingly reduced to a Thiele-like equation33 governing
the dynamics of the variable X . This equation, by making
appropriate manipulations (see Appendix A for the details),
can be reduced to the following form:

dx
dt

= �(x,j )ez × x − [d�(x,j ) − czpzj ] x + v, (1)

where x = X/R is the vortex displacement measured in units
of the pillar radius R, x = |x|, and ez is the z-axis unit vector
directed perpendicular to the layers and oriented from the fixed
layer to the free layer. The function �(x,j ) is the frequency
of the vortex free gyrotropic oscillation as a function of x

and the injected current density j . It is given by the following
expression:

�(x,j ) = �ms

[
1

1 − (x/2)2

]
+ jνoe

(
1 − x2

2

)
, (2)

where �ms and νoe are two positive parameters taking
into account the strength of the confining potential due to
magnetostatic and Oersted fields, respectively [see Eqs. (B7)
and (B8) for the exact form of �ms and νoe]. The second term on
the right-hand side (RHS) of Eq. (1) describes nonconservative
contributions. In this term, the dimensionless parameter d is
the normalized damping [see Eq. (B2)], the parameter cz is
the normalized spin-torque efficiency measured in units of
frequency over current density [see Eq. (B4)], and pz = cos θp,
where θp is the angle that the polarizer magnetization forms
with the z axis. The product czpzj controls the intensity of
the antidamping compensation due to the transfer of the spin
angular momentum from the polarizer to the free layer.29

Finally, the constant vector v is related to the effective in-plane
field Heff,xy acting on the vortex [see the discussion in
Appendix A after Eq. (A8)].

The external excitations are taken into account by the terms
j and v. More specifically, we assume that the system is subject
to a constant dc field and to a combination of dc and rf currents.
This leads to the following decomposition of j and v:

j (t) = jdc + jrf cos ωrf t, (3)

v(t) = vdc + vrf cos ωrf t. (4)

In the following we will analytically study Eq. (1) under the
above time-varying excitation conditions (3) and (4) in order
to find the parametric instability region for such a system (see
Fig. 3).

We start our analysis by considering the stability of vortex
small oscillations around the vortex-core static equilibrium
position x0 = X0/R, which is established when only constant
excitations are present, i.e., when j = jdc. The equilibrium
position can be computed by the following equation:

�(x0,jdc)ez × x0 + [czjdc pz − d �(x0,jdc)] x0 + vdc = 0,

(5)
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FIG. 3. (Color online) Phase diagram in the (frf,jrf ) plane with
indications of the region of parametric instability (red) and parametric
amplification (blue). Dashed lines represent two specific cases for
Irf = 1.8 mA (−11 dBm) and Irf = 0.6 mA (−20 dBm). The values
of the parameters used are P = 0.225, Idc = 2.5 mA, α = 0.01 (LL
damping), and x0 = 0.3.

where the term vdc [for the exact form observe that vdc =
−ez × f dc and f dc is given by Eq. (B3) when j = jdc] is due
to the effective in-plane field Heff,xy , which is assumed to be
a few tens of Oersted. In these conditions x0 = |x0| is in the
range [0.1; 0.3].

By considering the expansion of Eq. (1) in terms of
displacement from the equilibrium δx = x − x0, we obtain
a differential equation for δx in the following form:

d

dt
δx = A0(t) · δx + N (t,δx) + vrf cos ωrf t, (6)

where N (t,δx) contains all nonlinear terms in δx. By choosing
the x axis of the Cartesian reference in the direction of x0, the
matrix A0(t) can be written as

A0(t) =
(−dω̃1(t) + czpzj (t) −ω̃2(t)

ω̃1(t) −dω̃2(t) + czpzj (t)

)
,

(7)

where the two angular frequencies are given by

ω̃1(t) = �[x0,j (t)] + x0
∂

∂x0
�[x0,j (t)], (8a)

ω̃2(t) = �[x0,j (t)]. (8b)

By using Eq. (2) one obtains that

x0
∂

∂x0
�[x0,j (t)] ≈ (�ms/2 − νoej )x2

0 , (9)

where we have neglected terms of fourth and higher order in
x0. From the above equations one can readily verify that the
quantities appearing in the matrix A0, i.e., Eq. (7), are given
by the following expressions:

ω̃1,2(t) = ω1,2[1 + q1,2jrf cos(2πfrf t)], (10)

where

ω1 = �(x0,jdc) + (�ms/2 − νoejdc)x2
0 , (11a)

ω2 = �(x0,jdc). (11b)

The parameters q1 and q2, which are related to the rf com-
ponent of the Oersted field confining potential, are given by

q1 = νoe
[
1 − 3/2x2

0

]
ω1, (12a)

q2 = νoe
[
1 − 1/2x2

0

]
ω2. (12b)

It is important to notice that conservative terms on the RHS of
Eq. (6) are expected to be the dominant terms in vortex-core
oscillations. The other terms act as perturbations. This fact
can be used to discuss the parametric nature of the instability
of small motion of the vortex core around x0.

To be more specific, let us write the linear equation obtained
by Eq. (6) when the term N (t,δx) is neglected. In addition, due
to the fact that damping, rf excitations, and spin-torque terms
are small perturbations of vortex dynamics, we can neglect in
the diagonal elements of the matrix A0(t) all terms which are
second order with respect to the quantities d, jrf , and czpz.
This leads to the equation

d

dt
δx =

(−dω1 + czpzjdc −ω2

ω1 −dω2 + czpzjdc

)
· δx

+ jrf cos(2πfrf t)

(
0 −q2ω2

q2ω2 0

)
· δx

+ vrf cos(2πfrf t), (13)

where the quantities dω1,2 − czpzjdc, which control the
damping of vortex-core small oscillations, are assumed to be
both negative, as we assume that the dc current is below the
threshold for self-oscillations. The solution of Eq. (13) is given
by

δx = δxh(t) + δxrf(t), (14)

where δxh(t) and δxrf(t) are, respectively, the general solu-
tion of the homogeneous equation and the solution of the
nonhomogeneous equation. The dominant terms in Eq. (13)
are the time-independent off-diagonal terms of the first matrix
on the RHS of the equation. If we neglect all other terms,
the resulting vortex dynamics is free oscillations at the
frequency f0 = √

ω1ω2/(2π ). As we are interested in studying
excitations with frf ≈ 2f0, it is expected that the solution
δxrf(t) is small as it is driven by the off-resonance forcing term
vrf cos(2πfrf t). The term δxh(t) is, on the other hand, a solution
of a time-periodic homogenous linear equation [obtained by
removing the term vrf cos(2πfrf t) on the RHS of Eq. (13)]
which has the usual form of a linear parametrically excited
dynamical system.3 For sufficiently large rf excitation, δxh(t)
may exponentially grow.

Before proceeding to a more detailed analysis of the insta-
bility, let us discuss briefly the physical origin of this process.
The fact is that in general ω̃1(t) �= ω̃2(t) is a consequence of
the break of the symmetry due to the in-plane field Heff,xy ,
and it is indeed this break that controls the coupling between
vortex oscillations and parametric excitations. The situation is
similar to the case of usual parallel pumping in rotationally
symmetric systems. In that case, the coupling between the 2f0

excitations and the magnetization oscillations is controlled by
the ellipticity of the amplitude which is due to the dipolar fields
generated by the spin waves.11 In our case instead, parametric
pumping of vortex dynamics takes place only if q1 �= q2, which
occurs when the vortex oscillates around a displaced position.
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To treat analytically Eq. (6), we first observe that the
perturbative nature of the nonconservative terms on the RHS
induces only slow changes of the vortex oscillation amplitude
and phase. As a consequence, in order to describe this
slow variation when ωrf ≈ 2ω0, it is convenient to make the
following (Van Der Pol type) change of variable δx �→ a:

δx(t) =
(

cos(ωrf t/2) −(1/u) sin(ωrf t/2)
u sin(ωrf t/2) cos(ωrf t/2)

)
· a(t),

(15)

where u = (ω1/ω2)1/2 and ωrf = 2πfrf . The convenience of
the transformation (15) is related to the following circum-
stance. It provides the analytical solution of the problem (6)
when frf = 2f0 and when all nonlinear, nonconservative, and
rf terms in the equation are neglected. In this special case, the
quantity a can be taken as a constant. Due to the smallness of
the neglected terms, it is expected that during a time interval of
length Trf = 2π/ωrf , Eq. (15) with a(t) = const is a relatively
accurate description of the vortex gyration. On the other hand,
over time intervals of length equal to many periods Trf , the
effects of the neglected terms manifest themselves in slow time
variations of the variable a(t). This variable a(t) describes
the slowly varying amplitude of vortex-core gyrations. Our
next goal is to derive an approximate equation governing the
dynamics of the slow variable a(t).

By substituting Eq. (15) into Eq. (6) and by taking the time
average of the resulting equation over one period of the rf
oscillation, one arrives at the following equation:

da
dt

=
(−d ω̄0(a) + czpzjdc −δω̄0(a) − jrf�

δω̄0(a) − jrf� −d ω̄0(a) + czpzjdc

)
· a,

(16)

where

ω̄0(a) = ω0 − νoejdca
2/2 + �ms{(a/2)4/[1 − (a/2)2]}

(17)

and

δω̄0(a) = ω̄0(a) − ωrf/2 (18)

is the nonlinear detuning parameter. The parameter which
controls the coupling with the rf excitations is � = ω0(q2 −
q1)/4. In deriving Eq. (16), use of the fact that |u − 1| is a
small quantity has been made.

In the condition under study −dω0 + dczpz < 0, which in
turn implies that no sustained oscillations are excited. In this
condition, it is the rf time-varying Oersted field contribution
which is responsible for destabilizing the vortex core from
its equilibrium position. The stability of small magnetization
oscillations around the static equilibrium position can be
studied by considering the linearized version of Eq. (16)
around a = 0. The eigenvalues of such a linearized equation
are given by

λ1,2 = −d ω0 + czpzjdc ±
√

j 2
rf�

2 − (ω0 − ωrf/2)2. (19)

The stability is controlled by the sign of the real part of λ1,2

and the instability boundary in the (frf,jrf) plane is obtained
by imposing the vanishing of one eigenvalue. This leads to the

equation

j 2
rf�

2 − (ω0 − ωrf/2)2 = (d ω0 − czpzjdc)2, (20)

which describes a hyperbola centered at the point (ωrf =
2ω0,jrf = 0) and with asymptotes along the lines jrf =
±(ωrf/2 − ω0)/�. In Fig. 3, we show the corresponding phase
diagram in the (frf,Irf ) plane. When the point (ωrf,Irf ) enters
the region bounded by the hyperbola (red region in Fig. 3),
one of the two eigenvalues (19) becomes positive and a(t) is
exponentially growing in time. When the instability sets in, the
amplitude of the final regimes depends on the nonlinearities.
This will be discussed later on, but we anticipate that after
the instability the final nonlinear steady state is periodic with
the frequency frf/2. The blue region represents the region of
parametric amplification where both eigenvalues are real but
still negative.

IV. COMPARISON OF EXPERIMENTS VERSUS
ANALYTICAL MODEL

From Eq. (20), one derives that the minimum value of jrf

(threshold) such that there exists an interval of frf in which
instability occurs is

j th
rf = (d ω0 − czpzjdc)/�. (21)

For the particular parameter choices of Fig. 3, i.e., P = 0.225,
Idc = 2.5 mA, α = 0.01 [Landau level (LL) damping], x0 =
0.3, and I th

rf = j th
rf πR2 = 1 mA, which is the same value of I th

rf
observed in the experiments. In the following, we will discuss
the cases below (blue dashed line in Fig. 3) and above (black
dashed line in Fig. 3) threshold and compare analytical and
experimental results.

A. Dynamics below instability threshold

Here we want to analyze the vortex dynamics below j th
rf . In

general, outside the hyperbola the real parts of λ1,2 are negative
and small vortex oscillations are stable. Nevertheless, small
vortex oscillations can be driven by thermal fluctuations and
the qualitative features of the thermal response can be revealed
by considering the linear response of the average amplitude to
noise.

The linear equation is the following:

da
dt

=
( −�0 −δω0 − jrf�

δω0 − jrf� −�0

)
· a. (22)

�0 = d ω0 − czpzjdc is the total damping in the linear re-
sponse, while δω0 = ω0 − ωrf/2 is the detuning parameter.

At a relatively large detuning, i.e., when |δω0| � jrf�, the
eigenvalues (19) are complex conjugates and are given by
λ1,2 ≈ −� ± i δω0. In this condition, small motion around
a = 0 consists of damped oscillations with frequency frf/2 −
f0. In terms of frequency response this corresponds to a
power spectrum with a peak at the frequency |frf/2 − f0| of
linewidth 2�0/(2π ) (bandpass response). By using Eq. (15),
i.e., going back to the original variable δx, and using the fact
that the transformation introduces an amplitude modulation
of δx at frequency frf/2, one can infer that thermally driven
vortex dynamics has a power spectral density doubly peaked
at f0 and frf − f0, with a bandwidth given by �0/π [the
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mixing produced by the transformation (15) leads to a
signal with frequencies frf/2 − f0 ± frf/2 = frf − f0, − f0

and f0 − frf/2 ± frf/2 = f0,f0 − frf ].
The nature of linear relaxation dynamics changes when

ωrf ≈ 2f0 (blue region in Fig. 3), i.e., when the eigenvalues
become both real and negative. This situation is referred to as
parametric amplification. The negative sign is a consequence
of the condition jrf < j th

rf = �0/�. In particular, when jrf� �
|δω0|, the eigenvalues are given by λ1,2 ≈ −�0 ± jrf�. In
this situation, the frequency response of a is centered at
zero frequency (low pass response) with a bandwidth given
by (�0 − jrf�)/π . Thus, by using again Eq. (15), one can
conclude that the power spectral density of the thermally driven
vortex oscillation for jrf < j th

rf and jrf� > |δω0| is centered
at frf/2 and has a bandwidth given by (�0 − jrf�)/π with
a good approximation. We observe that in passing from a
damped oscillation response to a directed relaxation, the band-
width is reduced from �0/π to (�0 − jrf�)/π . In addition,
the amplitude of the vortex response to an external force
increases progressively as (frf,jrf) approaches the instability
boundary and theoretically goes to infinity at the boundary.
The qualitative features of the parametric amplification (am-
plitude amplification of noise and reduction of bandwidth)
are confirmed by experimental observations, although we do
not get a full qualitative agreement. Indeed, by using the
values of the parameters associated with the sample under
examination, with Irf = 0.6 mA we have �0/π = 600 kHz
and (�0 − jrf�)/π = 224 kHz. If we compare with the
measurements of the parametric amplification regime reported
in Fig. 2(b), we observe that the linewidth of the response
is estimated to be approximately 2.1 MHz, which is one
order of magnitude larger than the theoretically predicted one.
These discrepancies are related to the simplistic model used
to describe thermal fluctuations. A more accurate analysis
should take into account elementary excitations around the
vortex ground state. A detailed analysis of this issue and of the
thermal response of the MTJ vortex-based system is beyond
the scope of this paper.

B. Dynamics above instability threshold

Inside the instability region (red region in Fig. 3), the
equilibrium position x0 becomes unstable and the study of
the system response requires the inclusion of nonlinear terms.
This has been done in Fig. 4(a), which is a generalization of
Fig. 3. The nonlinear regime after instability can be found by
searching for nonzero equilibria of the general equation (16)
which, by taking into account Eq. (15), correspond to the
steady state of the vortex at a frequency frf/2. Equation (16)
always admits the solution a = 0, which corresponds to the
equilibrium position x0. Due to the structure of Eq. (16), the
nonlinearly saturated steady state can be conveniently found
by imposing that the determinant of the matrix at the RHS of
Eq. (16) is zero, which leads to the equation

j 2
rf�

2 − [ω̄0(a) − ωrf/2]2 = [d ω̄0(a) − czpzjdc]2 . (23)

The nonlinear response of the system can be then obtained
by keeping jrf fixed and interpreting Eq. (23) as an implicit
relation between a and ωrf . The result of this analytical
computation for the particular case of Irf = 1.8 mA [dashed
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FIG. 4. (Color online) (a) Phase diagram in the (frf,jrf ) plane with
indications of the region of parametric instability (red), coexistence
of stable regimes (green), and parametric amplification (blue). (b)
Analytically computed amplitude response vs frf , according to
Eq. (23) with Irf = 1.8 mA, which corresponds to a power value of
−11 dBm. The values of the parameters used are P = 0.225,
Idc = 2.5 mA, α = 0.01 (LL damping), and x0 = 0.3.

black line in Fig. 4(a)] is shown in Fig. 4(b). Solid lines indicate
stable regimes, while the dashed lines indicate unstable
regimes. In the white region only one state exists and it is
stable (a = 0). In the red region, parametric excitation takes
place and the amplitude of a starts to increase while the state at
a = 0 becomes unstable. In the region of coexistence (green
region in Fig. 4) the stable large amplitude regime coexists
with the stable equilibrium position of the vortex. This is due
to the fact that the large amplitude regime exists in a range
of frequency which goes well outside the region of linear
instability of the equilibrium position of the vortex. In fact, this
type of coexistence is typical of the nonlinear parametrically
driven response of an oscillator.2 The coexistence of two stable
regimes leads to the prediction of a hysteresis behavior of the
amplitude of oscillation under an alternate variation of the
frequency. This hysteresis phenomenon might be masked in
the presence of thermal fluctuations and hopping between the
two stable regimes.

To verify the prediction of the coexistence (green region
in Fig. 4), we present in Fig. 5 a series of measurements
performed on another junction from the same wafer, in which
the vortex gyrotropic dynamics has a few MHz difference for
the thermal resonant frequency. The measurements have been
performed with Hperp = 4.48 kG, Idc = 2.5 mA, and Irf =
1.8 mA (rms value) corresponding to −11 dBm of rf power.

In Figs. 5(a) and 5(b), we plot the vortex frequency f and the
power of the emitted signal as a function of frf , respectively. At
low frequencies (frf < 275 MHz), we detect only a small peak
around f0 corresponding to the thermally excited signal. At
frf = 275 MHz, a second peak with a very small power [note
the logarithmic scale in Fig. 5(b)] centered at frf − f0 appears.
This situation with two small peaks, whose power increases
with frf , lasts until 285 MHz. A typical spectrum in this regime
is shown in Fig. 5(c). Between 275 and 285 MHz the power for
both signals increases, as predicted by the theory. This is a sign
of parametric amplification, i.e., blue region in Fig. 4. In the
same interval both signals approach the frf/2 frequency. From
frf = 285 to 305 MHz, the spectra contain a main peak with
large power and two sidebands. The analysis of these thermally
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FIG. 5. (Color online) (a) Vortex fre-
quency f vs rf frequency frf . (b) Power
density vs rf frequency frf . All values are the
result of a Lorentzian fit applied to the raw
spectra in the same manner of Fig. 2. (c)–(e)
Power density vs frequency f for three
values of frf : 275, 295, and 305 MHz. Note
that these measurements have been made
with an out-of-plane field Hperp = 4.48 kG,
a subcritical dc current Idc = 2.5 mA, and a
rf current Irf = 1.8 mA, corresponding to a
power of −11 dBm.

excited sideband signals40 in the parametric regime is out of
the scope of this paper and for the sake of clarity we have not
reported their values in Figs. 5(a) and 5(b). In this rf frequency
range, the vortex frequency is locked to the source signal,
i.e., frf/2, and thus evolves linearly with the rf frequency [see
Fig. 5(a)]. As shown in Fig. 5(b), the peak power increases
exponentially to reach a maximum of ≈10 μW/GHz/mA2 at
frf = 295 MHz. The linewidth obtained at this rf frequency is
only a few tens of kHz. Then, between 295 and 300 MHz, the
power spectral density stagnates, meaning that the amplitude
of the vortex oscillation saturates. Further increasing frf above
300 MHz, the power density starts to decline. Moreover, at
frf = 305 MHz, we detect again a second peak centered at f0

[see Fig. 5(e)].
As expected by the analytical calculations [see Fig. 4(b)],

the two peaks, one at frf/2 and one at f0, detected in the
region between 305 and 315 MHz, correspond to the two
states predicted in the region of coexistence. Notably, the
main features of the power density evolution [see Fig. 5(b)]
are in agreement with the evolution expected by the theory
[see Fig. 4(b)]: The oscillation amplitude grows monotonically
from 102 to 104 nW/GHz/mA2 between 282 and 295 MHz.
Conversely, we find that the opposite reduction of power
occurs very sharply in few MHz (from 300 to 305 MHz). This
behavior corresponds to the soft-hard regime discrimination
already observed for the case of uniform magnetization.35 Note
that thermal effects, which are not considered in the model,
result in a blur of the transition between the different regimes,
and consequently allow some thermally induced transitions
from one state to the other. Furthermore, we believe that
another impact of thermal energy is to avoid the experimental
observation of the hysteresis effect predicted by the analytical
model [see Fig. 4(b)]. Complementary experiments at low
temperature and an analysis of the parametrically driven vortex

dynamics in the time domain might be helpful to address more
precisely the impact of temperature on the nonlinear vortex
dynamics.

V. CONCLUSIONS

In summary, we have presented a comprehensive inves-
tigation of parametric excitation of vortex dynamics in a
MTJ-based spin-transfer oscillator. Moreover, we propose an
analytical model to predict the phase diagram of our vortex
system in the presence of an external rf current at about
twice the natural vortex frequency. We report an observation
in spin-torque devices of the different parametric regimes
of amplification and instability. Finally, we demonstrate,
both experimentally and theoretically, the coexistence of two
parametric states of the vortex dynamics, evidencing the
important role of nonlinearities. The parametric excitation
in vortex-based devices might be used for highly efficient
rf detection or low-noise amplification using the specific
potential of these devices in tuning their rf features through
both the rf and dc current.
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APPENDIX A: DESCRIPTION OF THE THIELE EQUATION

The Thiele-like equation29,33 describing the magnetization
dynamics is written as

−G × d X
dt

+ D̂ · d X
dt

= −∂W

∂ X
+ Fst + Feff, (A1)

where X = X1ex + X2ey and (ex,ey) are the unit vectors of a
Cartesian reference frame in the plane of the disk. The variable
X is understood to fulfill the condition |X| � R, where R is
the radius of the pillar.

The first term on the left-hand side (LHS) of Eq. (A1) is the
gyroforce which is defined through the gyrovector32

G = −ez2πpLMs/γ, (A2)

where L is the layer thickness, Ms the free layer saturation
magnetization, and γ = 1.76 × 1011 rad s−1 T−1 is the
gyromagnetic ratio. The vector ez is the unit vector of the
axis z which is the axis of symmetry of the MTJ pillar and it is
directed from the fixed layer to the free layer. The constant p is
the polarity of the vortex (sign of the out-of-plane component
of magnetization in the vortex core) which is taken to be
p = +1.

The second term on the LHS of Eq. (A1) is the viscous-
type damping, and the quantity D̂(X) is a positive definite
symmetric tensor.32 Due to the rotationally invariant geometry
of the system, we assume that D̂(X) = D(X)I, where I is the
identity matrix and X = |X|. Since the dependence of D(X)
on X is not very strong, for the sake of simplicity, we assume
that damping is independent of X and it has the expression

D(X) = D = αη|G|, (A3)

where η is a geometrical factor given by the expression31

η = (1/2) ln (R/2b) − 1/8, and b is the vortex-core radius,
which we assume to be b = 2lex, where lex is the exchange
constant (the typical value of this quantity is lex ≈ 6.0 nm).

The first term on the right-hand side (RHS) of Eq. (A1)
is the force associated with the gradient of the vortex energy
W (X). This force, along with the gyroforce, are usually the
dominant terms in the equation. The vortex energy is the sum of
two terms W (X) = Wms(X) + Woe(X), which are, respec-
tively, the vortex magnetostatic energy and the vortex energy
due to the Oersted field generated by the current injected in
the pillar. In cylindrical pillars perpendicularly traversed by a
spatially uniform current density, the vortex energy depends
only on the amplitude X of the displacement and not on its
direction. The expressions of the above two contributions to
the vortex energy are

Wms(X) = −(κmsR
2/2) log[1 − (X/2R)2], (A4)

Woe(X) = j
(

1
2λoeX

2 + 1
4λ′

oeX
4/R2

)
. (A5)

The expression of magnetostatic energy (A4) has been derived
by Gaididei,34 and the parameter κms is given by the formula
κms = (10/9)μ0M

2
s L2/R. The Taylor expansion of Wms(X) up

to fourth order power in X agrees with the expression normally
used to analyze the vortex-core oscillation of moderate
amplitude.31,32 On the other hand, formula (A4) is expected
to be more accurate for large vortex-core motion, when the
vortex core is relatively close to the boundary of the disk.34

The nonlinear nature of vortex dynamics is mainly due to the
terms in W (X) which are of order larger than X2.

The Oersted energy (A5) is responsible for the direct
coupling of vortex dynamics with rf excitations as it is
proportional to the injected current density:

j = I/(πR2) = jrf cos(2πfrf t) + jdc, (A6)

with jrf = Irf/(πR2) and jdc = Idc/(πR2). The other param-
eters in Eq. (A5) are given by the following expressions:31

λoe = 0.85μ0MsRL and λ′
oe = −0.5λoe.

The second term on the RHS of Eq. (A1) is the component
of the spin-transfer related forces which is responsible for
compensating the damping of vortex dynamics. It has been
singled out from the other terms because of its special character
of being a negative damping term. Its expression is given by

Fst,z = Czpzj ez × X, (A7)

where pz = p · ez is the perpendicular component of the
polarizer magnetization, Cz = |G|γ σ/2, a constant measuring
the spin-torque efficiency, and σ = h̄P /(2|e|LMs); P is the
spin polarization, h̄ the Planck constant, and e the electron
charge.

The term Feff on the RHS of Eq. (A1) takes into account all
additional forces acting on the vortex and it is the sum of three
terms: Feff = Fext + Fst,xy + Fdef . The first term takes into
account the effects of the in-plane external Hext,xy magnetic
field to which the free layer is subject. This field is assumed
to take also into account the stray field coupling between the
free layer and the SAF polarizer. The term Fst,xy is due to
the spin-torque forces produced by the in-plane component
pxy of the polarizer magnetization.31 The term Fdef takes
into account extra forces such as those due to defects.41,42

The terms above are taken as constant with respect to X in
the present analysis. The form of Fst,xy has been derived
in the literature,31 but its exact expression is not crucial as the
Feff is estimated through measurements. Thus, for the purpose
of our analysis, it is sufficient to write Feff as follows:

Feff = C 2
3πMsLR(ez × Heff,xy), (A8)

where C is the vortex chirality which is assumed to be +1 in
the following. In general, expression (A8) is used to describe
the force on the vortex due to the external field. The use of
Heff,xy enables us to takes into account the contribution of the
term Fst,xy and Fdef .

The main effect of Feff under dc excitation is to produce
a break of the rotational symmetry of the system which leads
to a static shift of the core position from the MTJ center to
the position X0. The effect of this force is indeed equivalent
to an effective in-plane field Heff,xy . Even if the precise
determination of Heff,xy is not easy to obtain, from resistance
versus in-plane field measurements, we estimate it to be a few
tens of Gauss, thus enough to break the system symmetry even
at low injected rf currents.

In addition, it is important to discuss briefly the role of
the strong out-of-plane external field Hext,z to which the MTJ
structure is subject. This field is instrumental in tilting the
magnetization of the polarizer in order to increase the effi-
ciency of the spin-torque term. The tilting of the orientation of
magnetization in the polarizer can be approximately obtained
by the formula pz ≈ Hext,z/M

saf
s , where Msaf

s is the saturation
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magnetization of the polarizer. Due to Hext,z, the curling part
of the magnetic vortex (the one outside the vortex core) is
tilted out of plane, leading to an out-of-plane component of
magnetization

mz = cos � ≈ Hext,z/Ms = hz, (A9)

where � is the angle between magnetization and the z axis.
This tilting leads to a change of the parameters entering in
the energy of the vortex as follows: κms(hz) = κms(0)(1 − h2

z),
λoe(hz) = λoe(0)(1 − h2

z)1/2, where κms(0) and λoe(0) are the
values of the parameters previously specified. The fact that
magnetization goes out of plane also affects the gyrovector,
G(hz) = G(0)(1 − hz), where G(0) is the value of |G| given
by Eq. (A2). Other important parameters affected by Hext,z

are those related to nonconservative effects: damping and
spin-torque terms. For these terms we have the follow-
ing rescaling: Fst,z(X) = Czjpz(hz)(1 − h2

z)ez × X and D =
G(0)αη(hz)(1 − h2

z). The change of η as a function of hz is
ascribed to the change of the vortex radius in functions of hz

which, for the junctions under study, is approximated by an
exponential function b(hz) = b(0)e1.19hz .31 In summary, as we
have discussed above, the presence of strong Hext,z is taken
into account by an appropriate rescaling12,31 of the parameters
entering in all terms of Eq. (A1).

APPENDIX B: NORMALIZED EQUATION

In order to simplify the analysis, we proceed to a
normalization of Eq. (A1). By dividing both sides of the
equation by |G(hz)|R, one obtains the following normalized
equation:

ez × dx
dt

+ d
dx
dt

= −�(x,j )x + czpzj ez × x + f , (B1)

where x = X/R is the vortex displacement measured in units
of R,

d = D(hz)/|G(hz)| = αη(hz)(1 + hz) (B2)

is the normalized damping constant, and

f = Feff/(|G(hz)|R) (B3)

takes into account all in-plane constant forces acting on the
vortex.

In Eq. (B1) we have neglected the dependence of the various
parameters on hz for notational simplicity. The constant cz in
the second term on the RHS of Eq. (B1) is given by

cz = πMsLσ

|G(hz)| = γ σ

2
(1 + hz). (B4)

The function �(x,j ) is the frequency of the vortex free
gyrotropic oscillation, as a function of the displacement and
the injected current, and it is related to the vortex energy by
means of the following equation:

�(x,j ) = 1

|G(hz)|
1

X

∂W

∂X

∣∣∣∣
X=xR

. (B5)

By substituting formulas (A4) and (A5) into Eq. (B5), one
obtains

�(x,j ) = �ms

(
1

1 − (x/2)2

)
+ jνoe

(
1 − x2

2

)
, (B6)

where

�ms = κms(hz)

|G(hz)| = 5

9π
γμ0Ms

L

R
(1 + hz) (B7)

and

νoe = λoe(hz)

|G(hz)| = 0.85

2π
γμ0R

√
1 + hz

1 − hz

. (B8)

To make Eq. (B1) explicit with respect to dx/dt , we take
the vector product of both sides of the equation with ez and
then, by taking into account that

dx
dt

− dez × dx
dt

=
(

1 d

−d 1

)
· dx

dt
, (B9)

we can write Eq. (B1) in the explicit form

dx
dt

=
(

1 d

−d 1

)−1

· [�(x,j )ez × x + czpzj x + v] , (B10)

where

v = −ez × f . (B11)

Finally, by taking into account that in the usual condition d,
czpzj , and v are small quantities, and neglecting all terms
which contains second or higher order products of these
quantities, we obtain Eq. (1).
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