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We investigate analytically and numerically the synchronization dynamics of dipolarly coupled

vortex based Spin-Torque Nano Oscillators with different pillar diameters. We identify the critical

interpillar distances on which synchronization occurs as a function of their diameter mismatch. We

obtain numerically a phase diagram showing the transition between unsynchronized and

synchronized states and compare it to analytical predictions we make using the Thiele approach.

Our study demonstrates that for relatively small diameter differences the synchronization dynamics

can be described qualitatively using Adler equation. However, when the diameters difference

increases significantly, the system becomes strongly non-Adlerian. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821073]

The study of synchronization processes is an important

problem of nonlinear science, not only because of the wide

range of applications in physics, biology, chemistry, and

even in social systems, but also because of numerous funda-

mental challenges in understanding the collective dynamics

of large ensembles. Recently, a great attention has been

drawn to the studies of the phase locking in the arrays of

Spin-Torque Nano-Oscillators (STNO).1,2,34 STNOs benefit

from the spin-transfer phenomenon3–5 to generate the preces-

sion of magnetization in a free magnetic layer and magneto-

resistance effects to get the corresponding voltage signal.

These generators are nanoscaled, easily compatible with

CMOS architectures, and can be easily tuned by dc current

and/or external magnetic field.

Here, we consider STNOs whose free layers are in a

vortex state, where the gyrotropic motion of vortex core can

be excited by the injection of a dc current through a STNO

stack, even without any applied external magnetic field.6

Using both the gyrotropic vortex core motion and the tunnel

magnetoresistance (TMR) it is possible to obtain coherent

and high power output microwave signals.7 Interest to syn-

chronization of STNOs has arisen initially from the need to

increase further the coherence of the magnetic oscillations to

match the requirements of telecommunication applications,

but is increasingly considered as a strong candidate for

coherent multiple spin-wave emissions8 as well as for net-

works of oscillators for associative memory applications.9,10

There are several remarkable experimental and theoreti-

cal studies of STNOs synchronization achieved by various

physical mechanisms: Through electrical connection in se-

ries of STNOs,11–13,35 by spin wave propagation,14,15 and by

antivortices,16,17 another important mechanism to synchron-

ize STNOs is the magnetostatic coupling.18–22 The theoreti-

cal description of the synchronization dynamics of vortex

STNO is more complicated than the well known oscillating

systems such as coupled Van der Pol oscillators or rotators

(Josephson junction, rotating pendula) which have fixed orbit

radius, i.e., one degree of freedom, and thus can be described

by the Adler equation.23

In this paper, we investigate the feasibility of synchroni-

zation through dipolar interaction focusing on the case of

spin transfer vortex oscillators (STVOs). The vortex oscilla-

tor is a model system of particular interest since it only cou-

ples to neighbors due to the almost zero mean magnetization

at equilibrium. The orbit radius in STVOs may change in

time at the limit cycle, making their phase spaces multidi-

mensional. Thus, the second aim is to understand the work-

ability of simplified analytical descriptions based on Thiele

equation for the synchronization dynamics studies.

We consider a system of two nanopillars (see Fig. 1),

each composed by a free magnetic layer, a nonmagnetic

spacer, and a fixed polarizer which generates a perpendicular

spin polarization pz. Free layers in both STVOs are h¼ 10 nm

thick Ni81Fe19.24 The initial magnetic configuration is two

centered vortices with the same core polarities and chiralities.

The polarizing layers are not included in our consideration

because these layers, being uniformly magnetized in z direc-

tion, have almost no influence on the vortices motion.

In order to put STVOs in a steady oscillation regime,

equal current densities J of 7� 106 A/cm2 with the identical

spin polarization pz ¼ 0:2 which corresponds to spin-torque

amplitude aJ ¼ 5 Oe are injected through both STVOs. The

difference in initial frequencies of the two oscillators f i
1 and

f i
2 arise because of the deliberate pillar diameters difference

DD ¼ D1 � D2 around a mean diameter D0 ¼ 200 nm. Such

system simulates real device situations, when STVOs are not

identical because of lithography process accuracy.

In this work, we have performed the series of micromag-

netic simulations for diameters corresponding to differences

between 2.5% and 15%. For each case, we varied interpillara)Electronic mail: konstantin.zvezdin@gmail.com
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distance with a step of 2.5 nm in order to determine the critical

distance at which STVOs are still synchronized. The results of

these simulations are summarized in Table I. In Figure 2(a)),

we present the evolution of the spectrum of the Mx component

of the magnetization with decreasing distance between disk

edges for the case D1 ¼ 210 nm, D2 ¼ 190 nm. At interpillar

distances L > Lcr, the spectrum contains two peaks at the fre-

quencies of the two independent oscillators. When L < Lcr ,

the oscillators become synchronized and oscillate together at a

single frequency f12. The synchronized frequency f12 stands

between the frequencies of the isolated STVOs, with a value

closer to the frequency of the bigger oscillator. To illustrate

the synchronization process, the core dynamics in the case

D1 ¼ 202:5 nm, D2 ¼ 197:5 nm, and L¼ 600 nm (L < Lcr)

are shown in Figs. 2(b) (core orbit radii X1, X2) and 2(c)

(phase difference). As the vortices orbits increase towards

their steady state values, the dipolar interaction between the

vortices increases. Once the interaction energy becomes

strong enough, a phase locking occurs, leading to convergence

of the phase difference to a constant value.

High frequency oscillations of the orbit radii and the

phase difference can be observed even after the synchroniza-

tion is achieved (Figs. 2(b) and 2(c) insets). They are associ-

ated to high frequency forces acting on the cores in their

gyrotropic rotating frame induced by the dipolar interaction.

Notably, their action is averaged over the timescale of the

synchronization process, and will be neglected in the devel-

opment of our models.

Table I presents the evolution of the critical distance Lcr

and the frequency of synchronized oscillators f12 with the di-

ameter difference, compared to the isolated frequencies f i
1

and f i
2. For diameters difference below 10%, we found that

critical distances are greater than 250 nm, demonstrating the

high efficiency of dipolar coupling for vortex oscillators syn-

chronization. Mostly, these distances are easily compatible

with standard lithography techniques.

In the theory of synchronization, the interaction between

oscillators and the dynamics of the phase difference, in the

simplest cases, can be described by Adler’s equation25

dw
dt
¼ Dxþ u sin w; (1)

where Dx is a difference between frequencies of oscillators

and u is proportional to the interaction energy. In the plane

of parameters ðDx; uÞ the region �u < Dx < u is the one

where Eq. (1) has stable stationary solutions. This zone cor-

responds to phase locking and frequency entrainment and it

is called Arnold tongue.26

We now seek a more detailed insight on the synchroni-

zation process starting from two coupled Thiele equations.

These equations describe the vortices motions in their self-

induced gyrotropic mode and include a spin-transfer term as

well as a coupling term27–30

Gðez � _X1;2Þ � k1;2ðX1;2ÞX1;2 �D1;2
_X1;2

�FSTT1;2 � FintðX1;2Þ ¼ 0;
(2)

where G ¼ �2ppMsh=c is the gyroconstant, p is core polar-

ity, and c is the gyromagnetic ratio. The confining force is

given with kðX1;2Þ ¼ x01;2G 1þ a
X2

1;2

R2
1;2

� �
; where R1;2 are

disc radii31,32 and the gyrotropic frequency is x01;2

¼ 20
9

cMsh=R1;2. In this study, the Oersted field influence on

the dynamics was not taken into account, since at first order

it will only shift the self-frequencies of the vortex oscillators

and have no influence on the synchronization process. The

damping coefficient—D1;2 ¼ ag1;2G; g1;2 ¼ 1
2

ln
R1;2

2le

� �
þ 3

8
;

FIG. 1. Schematic representation of the studied system. There are two

STNOs with diameters D1;2 ¼ D06DD=2, where D0 ¼ 200 nm and DD=D0

ðDD ¼ D1 � D2Þ is a diameters detuning which is not more than 15%.

FIG. 2. (a) Power spectrum density of

x-component of total magnetization as

a function of distance between disks

edges for DD=D0 ¼ 10%, showing the

transition between unsynchronized and

synchronized states. (b) Core positions

X1;2 vs time for DD/D0¼ 2.5%,

L¼ 600 nm. (c) Phase difference as a

function of time, (DD/D0¼ 2.5%,

L¼ 600 nm).

TABLE I. Diameters difference and critical distance Lcr where synchroniza-

tion still exists. Frequencies f i
1 and f i

2 correspond to the frequencies of iso-

lated STVOs and f12 is the common frequency after synchronization.

D1 (nm) D2 (nm) DD=D0 (%) Lcr (nm) f i
1 (MHz) f i

2 (MHz) f12 (MHz)

202.5 197.5 2.5 607.5 473.1 480.6 477.8

205 195 5 495 469.4 484.7 484.7

207.5 192.5 7.5 397.5 465.4 488.9 469.8

210 190 10 287.5 462.2 493.7 468.1

212.5 187.5 12.5 150 458.0 498.0 463.5

215 185 15 90 457.0 501.9 456.5

122405-2 Belanovsky et al. Appl. Phys. Lett. 103, 122405 (2013)

Downloaded 23 Sep 2013 to 192.54.144.229. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions



where le ¼
ffiffiffiffiffiffiffiffi

A
2pM2

s

q
. The fourth term FSTT1;2 is the spin

transfer force. For the case of uniform perpendicularly

magnetized polarizers FSTT1;2 ¼ pcaJMshðX1;2 � ezÞ
¼ KðX1;2 � ezÞ (see Ref. 28), where the spin torque coeffi-

cient is aJ ¼ �hpzJ=ð2jejhMsÞ, �h is the Planck’s constant, and

e is the elementary charge. We chose to apply an equal cur-

rent density through the two pillars to ensure identical spin

transfer forces on the two vortex cores.

The interpillar interaction is summarized by a dipolar

coupling force term: FintðX1;2Þ ¼ �lðLÞX2;1, where lðLÞ is

a coupling parameter depending on the interpillar distance.

Here, only the first order interactions are considered in

keeping with previous work.30 Since small variations of

disc diameter do not cause significant changes of dipolar

coupling parameter lðLÞ, we can fairly estimate it from the

results obtained for the case of identical diameters in Ref.

30. The Arnold tongue (the region in the plane

(DD=D0; lðLÞ) for which synchronization is achieved),

extracted with the full micromagnetic simulations is shown

in Fig. 3, as the shaded region limited by dashed line with

empty squares.

Using the coupled equations, we now aim to deduce a

simple Adler-like equation describing the synchronization

process. In polar coordinates ðX1;2 cos u1;2;X1;2 sin u1;2Þ
Eq. (2) reads

_X1

X1

¼ ag1 _u1 �
K
G
þ l

G

X2

X1

sinðu1 � u2Þ; (3a)

_u1 ¼ �
kðX1Þ

G
� ag1

_X1

X1

� l
G

X2

X1

cosðu1 � u2Þ; (3b)

_X2

X2

¼ ag2 _u2 �
K
G
� l

G

X1

X2

sinðu1 � u2Þ; (3c)

_u2 ¼ �
kðX2Þ

G
� ag2

_X2

X2

� l
G

X1

X2

cosðu1 � u2Þ: (3d)

We can make some simplifications for small diameter

differences ðDD=D0 < 0:05Þ: (a) The condition DD=D0 � 1

allows us to linearize the following terms as

k1;2ðX1;2Þ � G x0 17
1

2

DD

D0

� �
þ x0a

X2
1;2

R2
0

17
3

2

DD

D0

� �" #
;

g1;2 � g06
1

4

DD

D0

;

where x0 and g0 are the gyrotropic frequencies for a disc

with radius R0 ¼ 100 nm and the damping g0 ¼ 1
2

ln R0

2le

� �
þ 3

8
.

(b) Assuming that the steady state vortex radii hardly differs

from its mean value, we can write X1;2 ¼ X0ð16eÞ, where

X0 ¼ ðX1 þ X2Þ=2 ¼ 60 nm (this value was obtained by

micromagnetic simulations for the case of same diameters

with D0 ¼ 200 nm), and e ¼ ðX1 � X2Þ=ðX1 þ X2Þ � 1 at the

limit cycle. This assumption was confirmed by micromagnetic

modeling for small DD=D0. (c) The synchronization of

STVOs with small diameters difference appears on large inter-

pillar distances, on these distances the interaction between

disks is quite weak and we can say that l� Gx0ar2
0, where

r0 ¼ X0=R0 (our calculations showed that for L > 400 nm

l � 10�4 erg/cm2 and Gx0ar2
0 � 0:1 erg/cm2).

These approximations allow us to transform Eqs.

(3a)–(3d) to the second order differential equation for phase

difference w ¼ u1 � u2

1

2ax0r2
0

€w þ ag0
_w þ 2

l
G

sin w ¼ 1

2
a

DD

D0

x0ð1þ ar2
0Þ: (4)

At the limit cycle the second derivative of w in Eq. (4)

tends to zero. The equation of motion then reads

dw
dt
¼ 1þ ar2

0

2g0

DD

D0

x0 �
2l

Gag0

sin w: (5)

Equation (5) has the stationary solutions when

jlj � G
a
4
ð1þ ar2

0Þ
DD

D0

x0:

The synchronization region for Eq. (5) is added in Fig. 3

(black line). It is seen that when DD=D0 � 5% the boundary

values obtained from Adler-like Eq. (5) differs from micro-

magnetic simulations even qualitatively. Therefore, our lin-

earization cannot be extended to the cases of significant

diameter mismatch. To complete our study and capture such

strongly asymmetric regimes, we finally evaluate the validity

of the coupled Thiele equations, without the latter approxi-

mations, to describe the synchronization dynamics.

Equations (3a)–(3d) were solved numerically using cou-

pling parameter l derived from micromagnetic simulations30

and the corresponding phase-diagram extracted (green line

in Fig. 3). As can be seen, Eqs. (3a)–(3d) give us reliable

results for diameters difference bigger than 5%, further than

with the simple Adler-like approach.

With the further increase of diameter difference, the

mismatch between the results obtained using Eqs. (3a)–(3d)

and the ones derived from micromagnetic simulations

FIG. 3. Arnold tongues obtained by micromagnetic simulations (shaded

region limited by blue squares), by numerical solutions of Eqs. (3a)–(3d)

(green line), and by Adler approximation (black line). The inner part of the

tongue represents synchronization region.
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becomes more significant. These differences come from the

fact that the Thiele equation was initially developed to

describe the steady oscillation regime with unperturbed orbit

radius.29,33 Therefore our equations cannot perfectly describe

the core dynamics when perturbed by a dipolar interaction,

especially when the eigenfrequency difference between

oscillators is large. However, this approach describes the

synchronization process well for the diameter differences up

to 12% much more than standard error of state-of-the-art fab-

rication process.

In summary, we have shown the possibility to synchron-

ize two STVOs with a frequency difference due to a differ-

ence in pillar diameter. Our micromagnetic simulations have

shown that the phase locking of this system appears at inter-

pillar distances below a critical value Lcr which depends on di-

ameter difference DD=D0. We have obtained the phase

diagram (Arnold tongue) which demonstrates the transition

between synchronized and unsynchronized regions. We have

also provided a quantitative analytical treatment based on

Thiele equations. Our study has shown that for DD=D0 � 5%,

the synchronization phase diagram can be described qualita-

tively using an Adler-like equation (5). However, the system

becomes strongly non-Adlerian once the diameter exceeds

5%. Although further increase of diameters difference drives

the synchronization dynamics into non-Adlerian regime, it

can still be well described by numerical integration of non-

linearized Thiele equations. Only for very large diameter dif-

ferences (more than 12%), which is far above the typical error

in state-of-the-art fabrication processes, does the Thiele-based

approach fail to describe the synchronization process. The rea-

son for the increasing complexity of synchronization regimes

in strongly asymmetric systems might be the excitation of

strongly nonlinear modes.
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